首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   4篇
测绘学   1篇
大气科学   4篇
地球物理   15篇
地质学   24篇
海洋学   2篇
天文学   3篇
自然地理   3篇
  2023年   1篇
  2018年   1篇
  2015年   4篇
  2014年   4篇
  2013年   1篇
  2012年   1篇
  2011年   8篇
  2010年   4篇
  2009年   1篇
  2008年   6篇
  2007年   1篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1989年   1篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
排序方式: 共有52条查询结果,搜索用时 15 毫秒
51.
Laboratory tests using Jet Erosion Testing (JET) apparatus, impinging normally on a horizontal boundary, were conducted to determine the critical shear stress (τc) of non‐cohesive soil samples. A three‐dimensional (3D) SonTek/YSI 16 MHz Micro‐Acoustic Doppler Velocimeter (MicroADV) was used to measure turbulent kinetic energy (TKE) at a radial limit of entrainment in the wall jet zone and the measurements were used to calculate τc of the samples. The results showed that TKE increases exponentially with increasing particle size. The τc from this study were comparable (R2 = 0.8) to the theoretical τc from Shields diagram after bed roughness scale ratio (D/ks), due to the non‐uniform bed conditions, was accounted for. This study demonstrated that JET and TKE can be used to determine τc of non‐cohesive soils. The use of JET and TKE was found to be faster and easier when compared to the conventional approach of using flumes. A relationship of TKE at the onset of incipient motion (TKEc) and samples’ D50 developed in this study can be used to predict τc of non‐cohesive soils under similar non‐uniform conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
52.
Lake Houston is a man-made reservoir located northeast of Houston, Texas. The purpose of this investigation was to document suspended sediment transport, sedimentation, and resuspension in the lake with a view towards estimating the influence of sedimentation on water quality. Sediment traps were placed in strategic locations in the lake to collect suspended sediments. Samples were analyzed for bulk density, grain size, organic carbon, and a number of trace elements. These data were analyzed along with meteorological data to examine those factors which regulate suspended sediment input and dispersal, and the role of suspended sediments in controlling water quality within the lake. Sediment input to the lake depends primarily on the intensity of rainfall in the watershed. Sediment movement within the lake is strongly influenced by wave activity, which resuspends sediments from shallow areas, and by wind-driven circulation. The increased residence time of suspended sediments due to resuspension allows greater decomposition of organic matter and the release of several trace elements from sediments to the water column. Virtually all samples from sediment traps suspended between 1 and 5 m above the lake bottom contain medium to coarse silt, and even some very fine sand-sized material. This implies that circulation in Lake Houston is periodically intense enough to transport this size material in suspension. During winter, northerly winds with sustained velocities of greater than 5 m/sec provide the most suitable condition for rapid (<1 d) transport of suspended sediment down the length of the lake. Fluctuations in current velocities and the subsequent suspension/deposition of particles may explain variations in the abundance of coliform bacteria in Lake Houston.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号