首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77023篇
  免费   1152篇
  国内免费   668篇
测绘学   1756篇
大气科学   6009篇
地球物理   15550篇
地质学   28251篇
海洋学   6260篇
天文学   16551篇
综合类   211篇
自然地理   4255篇
  2021年   710篇
  2020年   783篇
  2019年   843篇
  2018年   1919篇
  2017年   1775篇
  2016年   2254篇
  2015年   1335篇
  2014年   2207篇
  2013年   3879篇
  2012年   2314篇
  2011年   3162篇
  2010年   2636篇
  2009年   3543篇
  2008年   3294篇
  2007年   3086篇
  2006年   2918篇
  2005年   2393篇
  2004年   2309篇
  2003年   2145篇
  2002年   1961篇
  2001年   1825篇
  2000年   1743篇
  1999年   1407篇
  1998年   1495篇
  1997年   1425篇
  1996年   1172篇
  1995年   1188篇
  1994年   1004篇
  1993年   932篇
  1992年   990篇
  1991年   895篇
  1990年   983篇
  1989年   847篇
  1988年   788篇
  1987年   978篇
  1986年   798篇
  1985年   976篇
  1984年   1079篇
  1983年   1031篇
  1982年   1010篇
  1981年   887篇
  1980年   816篇
  1979年   792篇
  1978年   762篇
  1977年   705篇
  1976年   655篇
  1975年   626篇
  1974年   618篇
  1973年   603篇
  1972年   445篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
491.
492.
The present work was aimed to compare the abilities of radar and optical satellite data to estimate crop canopy cover, which is a key component of productivity estimates. Three ERS-1 SAR images were obtained of East Anglia (UK) in 1995 and one ERS-2 SAR image in 1996. The images covered a study area around the IACR Brooms Barn Sugar Beet Research Institute. Field data comprising radiometric and biophysical measurements of the crop canopy were collected in two fields from June 22 to August 3, 1995 to coincide with ERS-1 SAR overpass dates. In 1996, field data were collected in two fields from June 11 to July 29 on a weekly basis. A previously calibrated version of the water cloud model was inverted to estimate Leaf Area Index (LAI) from ERS-1 and ERS-2 SAR backscatter and soil moisture samples. Canopy cover was estimated from the radar-estimated LAI using a standard exponential relationship that has a well-established coefficient for sugar beet. Radio-metrically and atmospherically corrected data from three SPOT images in 1995 and one SPOT image in 1996 were used to calculate the Optimised Soil Adjusted Vegetation Index (OSAVI), from which crop canopy cover was estimated using a relationship determined previously by canopy modelling. The crop cover values estimated by satellite were in good agreement with those measured on ground with the Parkinson radiometer. Radar data may be able to provide useful estimates of canopy cover for crop production modelling, especially in the case of loss of optical data due to cloud.  相似文献   
493.
494.
Uncertainties in polar motion and length-of-day measurements are evaluated empirically using several data series from the space-geodetic techniques of the global positioning system (GPS), satellite laser ranging (SLR), and very long baseline interferometry (VLBI) during 1997–2002. In the evaluation procedure employed here, known as the three-corner hat (TCH) technique, the signal common to each series is eliminated by forming pair-wise differences between the series, thus requiring no assumed values for the “truth” signal. From the variances of the differenced series, the uncertainty of each series can be recovered when reasonable assumptions are made about the correlations between the series. In order to form the pair-wise differences, the series data must be given at the same epoch. All measurement data sets studied here were sampled at noon (UTC); except for the VLBI series, whose data are interpolated to noon and whose UT1 values are also numerically differentiated to obtain LOD. The numerical error introduced to the VLBI values by the interpolation and differentiation is shown to be comparable in magnitude to the values determined by the TCH method for the uncertainties of the VLBI series. The TCH estimates for the VLBI series are corrupted by such numerical errors mostly as a result of the relatively large data intervals. Of the remaining data sets studied here, it is found that the IGS Final combined series has the smallest polar motion and length-of-day uncertainties.  相似文献   
495.
Low-low satellite-to-satellite tracking (ll-SST) range-rate observations have been predicted by two methods: one based on a linear perturbation theory in combination with the Hill equations, and one based on solving the equations of motion of two low-flying satellites by numerical integration. The two methods produce almost equivalent Fourier spectra of the range-rate observations after properly taking into account a few resonant terms. For a typical GRACE-type configuration, where the two satellites trail each other at a distance of 300 km at an altitude of 460 km, and in the presence of the EGM96 gravity field model, complete to spherical harmonic degree and order 70, the agreement between the Fourier spectra is about 1 mm/s compared to a root-mean-square (RMS) value of more than 220 mm/s for the range-rate signal. The discrepancy of 1 mm/s can be reduced significantly when not taking into account perturbations caused by the J2 term. Excluding the J2 term, the agreement between the two methods improves to 0.4 mm/s compared to a RMS value of 6 mm/s for the range-rate signal. These values are 0.01 and 2.3 mm/s when ignoring the spectrum for frequencies below two cycles per orbital revolution, reducing the discrepancy even further to about 0.5% of the signal. The selected linear perturbation theory is thus capable of modeling gravity field induced range-rate observations with very high precision for a large part of the spectrum.  相似文献   
496.
The use of object-orientation for both spatial data and spatial process models facilitates their integration, which can allow exploration and explanation of spatial-temporal phenomena. In order to better understand how tight coupling might proceed and to evaluate the possible functional and efficiency gains from such a tight coupling, we identify four key relationships affecting how geographic data (fields and objects) and agent-based process models can interact: identity, causal, temporal and topological. We discuss approaches to implementing tight integration, focusing on a middleware approach that links existing GIS and ABM development platforms, and illustrate the need and approaches with example agent-based models.  相似文献   
497.
A new generation of Earth gravity field models called GGM02 are derived using approximately 14 months of data spanning from April 2002 to December 2003 from the Gravity Recovery And Climate Experiment (GRACE). Relative to the preceding generation, GGM01, there have been improvements to the data products, the gravity estimation methods and the background models. Based on the calibrated covariances, GGM02 (both the GRACE-only model GGM02S and the combination model GGM02C) represents an improvement greater than a factor of two over the previous GGM01 models. Error estimates indicate a cumulative error less than 1 cm geoid height to spherical harmonic degree 70, which can be said to have met the GRACE minimum mission goals. Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   
498.
Geographic Information System (GIS) software is constrained, to a greater or lesser extent, by a static world view that is not well-suited to the representation of time (Goodchild 2000). Space Time Intelligence System (STIS) software holds the promise of relaxing some of the technological constraints of spatial only GIS, making possible visualization approaches and analysis methods that are appropriate for temporally dynamic geospatial data. This special issue of the Journal of Geographical Systems describes some recent advances in STIS technology and methods, with an emphasis on applications in public health and spatial epidemiology.The STIS expert workshops were funded in part by grants R01CA092669 and R01CA096002 from the National Cancer Institute, and by grants R43-ES010220 and R44-ES010220 from the National Institute of Environmental Health Sciences. Gillian AvRuskin provided cheerful editorial assistance. We thank the participants at the workshops for providing invaluable expertise and critical insights.  相似文献   
499.
The Abel inversion is a straightforward tool to retrieve high-resolution vertical profiles of electron density from GPS radio occultations gathered by low earth orbiters (LEO). Nevertheless, the classical approach of this technique is limited by the assumption that the electron density in the vicinity of the occultation depends only on height (i.e., spherical symmetry), which is not realistic particularly in low-latitude regions or during ionospheric storms. Moreover, with the advent of recent satellite missions with orbits placed around 400 km (such as CHAMP satellite), an additional issue has to be dealt with: the treatment of the electron content above the satellite orbits. This paper extends the performance study of a method, proposed by the authors in previous works, which tackles both problems using an assumption of electron-density separability between the vertical total electron content and a shape function. This allows introducing horizontal information into the classic Abel inversion. Moreover, using both positive and negative elevation data makes it feasible to take into account the electron content above the LEO as well. Different data sets involving different periods of the solar cycle, periods of the day and satellites are studied in this work, confirming the benefits of this improved Abel transform approach.  相似文献   
500.
In space-borne gravitational field determination, two challenges are inherent. First, the continuation of the data down to the surface of the Earth is an ill-posed problem, requiring therefore regularization techniques. Second huge data sets result requiring efficient numerical methods. In this paper, we show how locally supported wavelets on the sphere can be developed by means of a spherical version of the so-called up function. By construction, the corresponding scaling functions and wavelets are infinitely smooth, so that they can be used for regularization purposes. In particular, we show how the ill-posed pseudo-differential equations coming from satellite missions can be regularized by efficient numerical schemes using locally supported wavelets. These methods seem in particular to be interesting for regional gravity field modelling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号