首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1214篇
  免费   33篇
  国内免费   4篇
测绘学   26篇
大气科学   59篇
地球物理   304篇
地质学   362篇
海洋学   102篇
天文学   192篇
综合类   2篇
自然地理   204篇
  2021年   7篇
  2020年   9篇
  2019年   9篇
  2018年   22篇
  2017年   16篇
  2016年   19篇
  2015年   26篇
  2014年   32篇
  2013年   64篇
  2012年   24篇
  2011年   42篇
  2010年   41篇
  2009年   51篇
  2008年   54篇
  2007年   60篇
  2006年   48篇
  2005年   37篇
  2004年   50篇
  2003年   42篇
  2002年   34篇
  2001年   26篇
  2000年   32篇
  1999年   16篇
  1998年   15篇
  1997年   30篇
  1996年   22篇
  1995年   23篇
  1994年   12篇
  1993年   22篇
  1992年   24篇
  1991年   26篇
  1990年   18篇
  1989年   14篇
  1988年   10篇
  1987年   12篇
  1986年   17篇
  1985年   18篇
  1984年   22篇
  1983年   17篇
  1982年   18篇
  1981年   17篇
  1980年   18篇
  1979年   12篇
  1978年   15篇
  1977年   20篇
  1976年   11篇
  1975年   14篇
  1974年   12篇
  1973年   13篇
  1972年   8篇
排序方式: 共有1251条查询结果,搜索用时 15 毫秒
291.
We present data for dissolved germanic and silicic acids from several settings: sediment pore water profiles collected from the Peru-Chile continental margin, fluxes measured with in situ benthic flux chambers and shipboard whole-core incubations, and water column profiles from the California continental margin. Collectively, these data show that Ge and Si are fractionated in these continental margin sedimentary environments during diagenesis with ∼50% of the Ge released by opal dissolution being sequestered within the sediments. The areal extent of this diagenetic fractionation covers station depths from ∼100 m to >1000 m. Sediments from these sites typically have high pore water Fe2+ present in the upper ∼2 cm. At sites with low Fe2+ concentrations in the upper pore waters, the Ge:Si benthic regeneration ratio indicates little or no fractionation during diatom dissolution. Consistent with the sedimentary fractionation, water column dissolved Ge:Si ratios along the continental margin are on average lower (0.66 μmol/mol) than the global average ratio (0.72 μmol/mol, Mortlock and Froelich, 1996). This lower “average” ratio is driven by two distinct ΔGe:ΔSi data trends having similar slopes but different intercepts. Data from the upper ∼150 m has a Ge:Si slope of 0.74 ± 0.04 μmol/mol (2σ) and an intercept of 0.5 ± 0.4; whereas below ∼550 m the slope is 0.70 ± 0.06 μmol/mol, but the intercept is −5.0 ± 8.0. Assuming that the sediments sampled here are representative of all reducing marine environments, an assumption requiring further testing, our calculations indicate that sequestration of Ge into a nonopal phase throughout the global ocean in the depth range 0.2-1 km is sufficient to balance the Ge budget. Thus, we tentatively conclude that sequestering of Ge in reducing continental margin sediments is the “missing” Ge sink.  相似文献   
292.
293.
A parallelizable, semi‐implicit numerical method is proposed for the study of naturally‐fractured reservoir systems. It has proved to be computationally efficient in producing accurate numerical solutions for the dual‐porosity model for immiscible, two‐phase flow in such reservoirs. The method combines hybridized mixed finite elements, a new version of the modified method of characteristics, a sophisticated operator‐splitting procedure for separating the pressure calculation in the fractures from that of the saturation, another operator splitting to handle the interaction of the matrix blocks and the fractures, and domain decomposition iterative procedures for both the pressure and the saturation. It permits moderately long time steps for the pressure and the saturation in the fractures and matrix blocks by using short, inexpensive microsteps to treat the transport portion of the saturation equation in the fractures. This paper is devoted to the formulation of the method and a discussion of numerical results for five‐spot and vertical cross‐section examples.  相似文献   
294.
Visible and near-infra-red spectra of chemically analyzed grains of glass and minerals from the Luna 20 sample were compared with diffuse reflectance spectra of the bulk soil. As in the spectra of soil samples from other localities on the Moon, pyroxene contributes two broad absorption features near 1 μm and 2 μm. The soil has a high integral reflectance (or albedo) arising from plagioclase, which appears to be the dominant mineral in the lunar highlands. The Luna 20 soil curve is most similar to the reflectance curves of the non-rayed soils at Apollo 16, in agreement with the generally similar mineralogy of these samples. The average pyroxene composition in the Luna 20 soil, as determined from the absorption bands in the diffuse reflectance spectra, and analyses of single crystals, is more calcic than in the lithic fragments. Thus, the soil appears to have a few per cent of admixed material derived from mare basalts. Comparison of the soil spectrum with telescopic curves of nearby areas reveals a close similarity; however, the Luna 20 sample is slightly less mature than expected. Luna 20 may have sampled subsurface material that is fresher than the regional surface soil, or alternatively, the Luna 20 area may contain an admixture of relatively recently exposed material from a ray crater.  相似文献   
295.
Partial fusion hypotheses have been proposed for the origin of lherzolite-harzburgite alpine peridotite associations. Analyzed lherzolites from Othris, Ronda, Lanzo and Beni Bouchera, have light REE depleted to chondritic REE abundances, and clinopyroxenes contain most of the REE relative to depleted olivine and orthopyroxene. Variation in the level of REE enrichment within these lherzolites indicates mantle heterogeneity probably caused by partial melting processes. The Beni Bouchera spinel lherzolite and the Othris plagioclase lherzolite are the best candidates for relatively undepleted mantle based on REE studies. Fractional fusion calculations (15–25%) reveal that partial melts have REE characteristics somewhat similar to oceanic tholeiites. Conversely, computed source peridotites from oceanic tholeiites (Schilling, 1975) are similar to the alpine lherzolites reported here. Alpine lherzolites are, however, depleted in trace elements (K, Rb, Sr and Ba, Menzies and Murthy 1976). Since the lherzolites have an undepleted major, minor and REE chemistry close to that of pyrolite, the lost trace element-rich fraction must represent a small degree of melting. It is proposed that alpine lherzolites are residue left after the loss of a nephelinitic/alkalic fraction, ([Ce/Yb]N=2.0–4.01) representing a small degree of partial fusion. This labile fraction may have existed as an intergranular phase or hydrous mineral prior to melting.  相似文献   
296.
297.
Douglas  John  Azarbakht  Alireza 《Natural Hazards》2021,105(1):293-311

In the past couple of decades, Operational Earthquake Forecasting (OEF) has been proposed as a way of mitigating earthquake risk. In particular, it has the potential to reduce human losses (injuries and deaths) by triggering actions such as reinforcing earthquake drills and preventing access to vulnerable structures during a period of increased seismic hazard. Despite the dramatic increases in seismic hazard in the immediate period before a mainshock (of up to 1000 times has been observed), the probability of a potentially damaging earthquake occurring in the coming days or weeks remains small (generally less than 5%). Therefore, it is necessary to balance the definite cost of taking an action against the uncertain chance that it will mitigate earthquake losses. In this article, parametric cost–benefit analyses using a recent seismic hazard model for Europe and a wide range of inputs are conducted to assess when potential actions for short-term OEF are cost–beneficial prior to a severe mainshock. Ninety-six maps for various combinations of input parameters are presented. These maps show that low-cost actions (costing less than 1% of the mitigated losses) are cost–beneficial within the context of OEF for areas of moderate to high seismicity in the Mediterranean region. The actions triggered by OEF in northern areas of the continent are, however, unlikely to be cost–beneficial unless very large increases in seismicity are observed or very low-cost actions are possible.

  相似文献   
298.
A combined petrographic/X-ray/electron microprobe and energy dispersive system investigation of sandstone cuttings from borehole Elmore # 1 near the center of the Salton Sea Geothermal Field has revealed numerous regular variations in the composition, texture, mineralogy and proportions of the authigenic layer silicate minerals in the temperature interval 185° C (411.5 m depth) to 361° C (2,169 m). At temperatures near 190° C, dolomite/ankerite+calcite-bearing sandstones contain an illite/mixed layer phase with 10% expandable layers (dolomite/ankerite zone). In shale, the percentage of expandable layers in the mixed layer phase changes from 10–15% at 185° C to 5% at 210° C (494 m). In the interval 250° C (620 m) to 325° C (1,135 m), the calcite+pyrite+epidote-bearing sandstones contain a layer silicate assemblage of chlorite and illite (chlorite-calcite zone). In the shallower portions of this metamorphic zone, the illite contains 0–5% expandable layers, while at depths greater than 725 m (275° C) it is completely free of expandable layers. On increasing temperature, the white mica shows regular decreases in SiIV, Mg and Fe, and increase in AlIV, AlVI, and interlayer occupancy, as it changes gradually from fine-grained illite (=textural sericite) to coarse-grained recrystallized phengitic white mica. In the same interval, chlorite shows decreases in AlVI and octahedral vacancies and an increase in total Mg+Fe. The sandstones range from relatively unmodified detrital-textured rocks with porosities up to 20% and high contents of illite near 250° C to relatively dense hornfelsic-textured rocks with trace amounts of chlorite and phengite and porosities near 5% at 325° C. Numerous complex reactions among detrital (allogenic) biotite, chlorite, and muscovite, and authigenic illite and chlorite, occur in the chlorite-calcite zone.Biotite appears, and calcite disappears, at a temperature near 325° C and a depth of 1,135m. The biotite zone so produced persists to 360° C in sandstone, at which temperature orthoclase disappears and andradite garnet appears at a depth near 2,155 m. Throughout the biotite zone and into the garnet zone, the biotite undergoes compositional changes that are very similar to those observed in illite/phengite in the chlorite-calcite zone, including increases in interlayer occupancy, AlIV, AlVI, and Ti, and decreases in F, SiIV, and Mg/Fet+Mg, on increasing temperature. Biotite thus changes from a siliceous, K-deficient biotite at the biotite isograd to a typical low-grade metamorphic biotite at temperatures near 360° C. Minor amounts of talc appear with biotite at the biotite isograd in sandstone, while actinolite appears in both sandstone and shale at temperatures near 340° C (1,325 m). Chlorite completely disappears from sandstone at temperatures of approximately 350° C (1,500 m), and diminishes abruptly in amount in the more chloritic shales at the same depth.  相似文献   
299.
To identify chemical group affinities and infer the occurrence of thermal metamorphism or aqueous alteration in their histories, we quantified 43 trace elements in the CM or CM-related Antarctic carbonaceous chondrites EET 96010, LAP 02277, MET 01070, and WIS 91600. We also analyzed LAP 02206, a CV chondrite, to add to our comparison database. We present whole-rock oxygen isotope data for LAP 02206, LAP 02277, and MET 01070 to complement our trace element results. With these data, we confirm the CV classification of LAP 02206 and CM or CM-like classification for the other four chondrites in this study. On the basis of moderately volatile element content, our results show that EET 96010 experienced open-system heating, while any heating LAP 02277 and MET 01070 may have experienced was in a chemically closed-system. WIS 91600, on a trace element basis, appears to be CM-like material. Our analyses support the idea that CM material has experienced a wide variety of post-accretionary processing.  相似文献   
300.
This paper uses results from the National Oceanic and Atmospheric Administration’s National Status and Trends Program (NS&T) to place the environmental quality of Long Island Sound in a broader perspective. It compares levels of contaminants in blue mussels from ten Long Island Sound sites and in sediments from seven Long Island Sound sites with concentrations in the same media at 87 and 221 other sites, respectively, where comparable samples were obtained. In sediments, the levels of both trace metals and organic contaminants tend to be relatively high for Long Island Sound sites. This is especially true for five of the twelve metals (silver, cadmium, copper, lead, and zinc) and for five of six categories of organic contaminants (total chlordane, low molecular weight polycyclic aromatic hydrocarbons (PAHs), high molecular weight PAHs, total polychlorinated biphenyls, and total dichlorodiphenyltrichloroethanes). In mussels, the organic contaminant categories exhibit relatively high levels, but this is not true for most of the metals. In fact, four of the metals—arsenic, mercury, selenium, and zinc—show evidence of relatively low levels in mussels from Long Island Sound compared to other NS&T locations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号