首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   4篇
  国内免费   2篇
测绘学   9篇
大气科学   18篇
地球物理   41篇
地质学   66篇
海洋学   32篇
天文学   30篇
自然地理   16篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   5篇
  2019年   2篇
  2018年   7篇
  2017年   6篇
  2016年   7篇
  2015年   7篇
  2014年   2篇
  2013年   9篇
  2012年   8篇
  2011年   6篇
  2010年   15篇
  2009年   12篇
  2008年   9篇
  2007年   12篇
  2006年   7篇
  2005年   9篇
  2004年   8篇
  2003年   9篇
  2002年   7篇
  2001年   9篇
  2000年   8篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1986年   2篇
  1985年   1篇
  1982年   5篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
  1974年   3篇
  1966年   1篇
排序方式: 共有212条查询结果,搜索用时 15 毫秒
71.
The Emmaville eucrite is a relatively poorly studied basaltic achondrite with an anomalous oxygen isotope signature. In this study, we report comprehensive mineralogical, petrographic, and geochemical data from Emmaville in order to understand its petrogenesis and relationship with the basaltic eucrites. Emmaville is an unusually fine‐grained, hornfelsic‐textured metabasalt with pervasive impact melt veins and mineral compositions similar to those of typical basaltic eucrites. The major and trace element bulk composition of Emmaville is also typical of a basaltic eucrite. Three separated individual lithologies were also analyzed for O isotopes; a dark gray fraction (E1), a shocked lithology (E2), and a lighter gray portion (E3). Fractions E1 and E2 shared similar O isotope compositions to the bulk sample (E‐B), whereas the lighter gray portion (E3) is slightly elevated in Δ17O and significantly elevated in δ18O compared to bulk. No evidence for any exogenous material is observed in the thin sections, coupled with the striking compositional similarity to typical basaltic eucrites, appears to preclude a simple impact‐mixing hypothesis. The O‐isotopes of Emmaville are similar to those of Bunburra Rockhole, A‐881394, and EET 92023, and thus distinct from the majority of the HEDs, despite having similarities in petrology, mineral, and bulk compositions. It would, therefore, seem plausible that all four of these samples are derived from a single HED‐like parent body that is isotopically distinct from that of the HEDs (Vesta) but similar in composition.  相似文献   
72.
A combination of beta spiral and minimum length inverse methods, along with a compilation of historical and recent high-resolution CTD data, are used to produce a quantitative estimate of the subthermocline circulation in Cascadia Basin. Flow in the North Pacific Deep Water, from 900-1900 m, is characterized by a basin-scale anticyclonic gyre. Below 2000 m, two water masses are present within the basin interior, distinguished by different potential temperature-salinity lines. These water masses, referred to as Cascadia Basin Bottom Water (CBBW) and Cascadia Basin Deep Water (CBDW), are separated by a transition zone at about 2400 m depth. Below the depth where it freely communicates with the broader North Pacific, Cascadia Basin is renewed by northward flow through deep gaps in the Blanco Fracture Zone that feeds the lower limb of a vertical circulation cell within the CBBW. Lower CBBW gradually warms and returns to the south at lighter density. Isopycnal layer renewal times, based on combined lateral and diapycnal advective fluxes, increase upwards from the bottom. The densest layer, existing in the southeast quadrant of the basin below 2850 m, has an advective flushing time of 0.6 years. The total volume flushing time for the entire CBBW is 2.4 years, corresponding to an average water parcel residence time of 4.7 years. Geothermal heating at the Cascadia Basin seafloor produces a characteristic bottom-intensified temperature anomaly and plays an important role in the conversion of cold bottom water to lighter density within the CBBW. Although covering only about 0.05% of the global seafloor, the combined effects of bottom heat flux and diapycnal mixing within Cascadia Basin provide about 2-3% of the total required global input to the upward branch of the global thermohaline circulation.  相似文献   
73.
Abstract— Aqueous activity on meteorite parent bodies is indicated by the presence of carbonates. High spatial resolution ion microprobe analyses of nine individual carbonate grains (four dolomites, five breunnerites) from the Orgueil meteorite reveal linear correlations between 53Cr excesses and Mn/Cr ratios in all grains, indicative of in situ decay of radioactive 53Mn (half‐life 3.7 million years). The well‐defined isochrons appear to have chronological significance. If this is the case, then 53Mn/55Mn ratios between 2.1 and 4.7 × 10?6 are inferred for the time of carbonate formation and absolute ages of between 4561 and 4565 Ma are calculated (systematic uncertainty of ±2 Ma). Dolomites tend to have formed slightly earlier than the breunnerites. Our data imply extensive aqueous activity on the Orgueil parent body over a period of several million years, starting ~3–4 Myr after formation of the solar system, that most likely was the result of impact heating and latent heat from the decay of radioactive 26Al and 60Fe.  相似文献   
74.
Colour–magnitude diagrams are presented for the first time for L32, L38, K28 (L43), K44 (L68) and L116, which are clusters projected on to the outer parts of the Small Magellanic Cloud (SMC). The photometry was carried out in the Washington system C and T 1 filters, allowing the determination of ages by means of the magnitude difference between the red giant clump and the main-sequence turn-off, and metallicities from the red giant branch locus. The clusters have ages in the range 2–6 Gyr , and metallicities in the range −1.65<[Fe/H]<−1.10, increasing the sample of intermediate-age clusters in the SMC. L116, the outermost cluster projected on to the SMC, is a foreground cluster, and somewhat closer to us than the Large Magellanic Cloud. Our results, combined with those for other clusters in the literature, show epochs of sudden chemical enrichment in the age–metallicity plane, which favour a bursting star formation history as opposed to a continuous one for the SMC.  相似文献   
75.
The extension of the functional capacity of geographic information systems (GIS) with tools for statistical analysis in general and exploratory spatial data analysis (ESDA) in particular has been an increasingly active area of research in recent years. In this paper, two operational implementations that combine the functionality of spatial data analysis software with a GIS are considered more closely. They consist of linkages between the S-PLUS software for data analysis and two different GIS implementations, the ArcView desktop system, which is mostly vector-oriented, and the primarily raster-based Grassland open GIS environment. We emphasize conceptual and technical issues related to the software implementation of these approaches and suggest future directions for linking spatial statistics and GIS. Received: 14 January 1999 / Accepted: 11 May 1999  相似文献   
76.
77.
78.
The timing of glaciation in the Lahul Himalaya of northern India was ascertained using the concentrations of cosmogenic 10Be and 26Al from boulders on moraines and drumlins, and from glacially polished bedrock surfaces. Five glacial stages were identified: Sonapani I and II, Kulti, Batal and Chandra. Of these, cosmogenic exposure ages were obtained on samples representative of the Batal and Kulti glacial cycles. Stratigraphical relationships indicate that the Sonapani I and II are younger. No age was obtained for the Chandra glacial advance. Batal Glacial Stage deposits are found throughout the valley, indicating the presence of an extensive valley glacial system. During the Kulti Stage, glaciers advanced ca. 10 km beyond their current positions. Moraines produced during the Batal Stage, ca. 12–15.5 ka, are coeval with the Northern Hemisphere Late‐glacial Interstadial (Bølling/Allerød). Deglaciation of the Batal Glacial Stage was completed by ca. 12 ka and was followed by the Kulti Glacial Stage during the early Holocene, at ca. 10–11.4 ka. On millennial time‐scales, glacier oscillations in the Lahul Himalaya apparently reflect periods of positive mass‐balance coincident with times of increased insolation. During these periods the South Asian summer monsoon strengthened and/or extended its influence further north and west, thereby enhancing high‐altitude summer snowfall. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
79.
We carried out Washington system photometry of the intermediate-age Large Magellanic Cloud (LMC) star clusters NGC 2155 and SL 896 (LW 480). We derive ages and metallicities from the T 1 versus     colour–magnitude diagrams (CMDs). For the first time an age has been obtained for SL 896,     . For NGC 2155 we derive     . The two clusters basically define the lower age limit of the LMC age gap. In particular, NGC 2155 is confirmed as the oldest intermediate-age LMC cluster so far studied. The derived metallicities are     and     for NGC 2155 and SL 896, respectively. We also studied the CMDs of the surrounding fields, which have a dominant turn-off comparable to that of the clusters themselves, and similar metallicity, showing that one is dealing with an intermediate-age disc where clusters and field stars have the same origin. We inserted the present clusters in the LMC and Small Magellanic Cloud (SMC) age–metallicity relations, using a set of homogeneous determinations with the same method as in our previous studies, now totalling 15 LMC clusters and four SMC clusters, together with some additional values from the literature. The LMC and SMC age–metallicity relations appear to be remarkably complementary, since the SMC was actively star-forming during the LMC quiescent age gap epoch.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号