首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   4篇
  国内免费   2篇
测绘学   9篇
大气科学   18篇
地球物理   41篇
地质学   66篇
海洋学   32篇
天文学   30篇
自然地理   16篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   5篇
  2019年   2篇
  2018年   7篇
  2017年   6篇
  2016年   7篇
  2015年   7篇
  2014年   2篇
  2013年   9篇
  2012年   8篇
  2011年   6篇
  2010年   15篇
  2009年   12篇
  2008年   9篇
  2007年   12篇
  2006年   7篇
  2005年   9篇
  2004年   8篇
  2003年   9篇
  2002年   7篇
  2001年   9篇
  2000年   8篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1986年   2篇
  1985年   1篇
  1982年   5篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
  1974年   3篇
  1966年   1篇
排序方式: 共有212条查询结果,搜索用时 187 毫秒
31.
There are two main approaches for dealing with model biases in forecasts made with initialized climate models. In full-field initialization, model biases are removed during the assimilation process by constraining the model to be close to observations. Forecasts drift back towards the model’s preferred state, thereby re-establishing biases which are then removed with an a posterior lead-time dependent correction diagnosed from a set of historical tests (hindcasts). In anomaly initialization, the model is constrained by observed anomalies and deviates from its preferred climatology only by the observed variability. In theory, the forecasts do not drift, and biases may be removed based on the difference between observations and independent model simulations of a given period. Both approaches are currently in use, but their relative merits are unclear. Here we compare the skill of each approach in comprehensive decadal hindcasts starting each year from 1960 to 2009, made using the Met Office decadal prediction system. Both approaches are more skilful than climatology in most regions for temperature and some regions for precipitation. On seasonal timescales, full-field initialized hindcasts of regional temperature and precipitation are significantly more skilful on average than anomaly initialized hindcasts. Teleconnections associated with the El Niño Southern Oscillation are stronger with the full-field approach, providing a physical basis for the improved precipitation skill. Differences in skill on multi-year timescales are generally not significant. However, anomaly initialization provides a better estimate of forecast skill from a limited hindcast set.  相似文献   
32.
33.
34.
The flux of ammonia, phosphate, silica and radon-222 from Potomac tidal river and estuary sediments is controlled by processes occurring at the sediment-water interface and within surficial sediment. Calculated diffusive fluxes range between 0·6 and 6·5 mmol m?2 day?1 for ammonia, 0·020 and 0·30 mmol m?2 day?1 for phosphate, and 1·3 and 3·8 mmol m?2 day?1 for silica. Measured in situ fluxes range between 1 and 21 mmol m?2 day?1 for ammonia, 0·1 and 2·0 mmol m?2 day?1 for phosphate, and 2 and 19 mmol m?2 day?1 for silica. The ratio of in situ fluxes to diffusive fluxes (flux enhancement) varied between 1·6 and 5·2 in the tidal river, between 2·0 and 20 in the transition zone, and from 1·3 to 5·1 in the lower estuary. The large flux enhancements from transition zone sediments are attributed to macrofaunal irrigation. Nutrient flux enhancements are correlated with radon flux enhancements, suggesting that fluxes may originate from a common region and that nutrients are regenerated within the upper 10–20 cm of the sediment column.The low fluxes of phosphate from tidal viver sediments reflect the control benthic sediment exerts on phosphorus through sorption by sedimentary iron oxyhydroxides. In the tidal river, benthic fluxes of ammonia and phosphate equal one-half and one-third of the nutrient input of the Blue Plains sewage treatment plant. In the tidal Potomac River, benthic sediment regeneration supplies a significant fraction of the nutrients utilized by primary producers in the water column during the summer months.  相似文献   
35.
Kick em Jenny submarine volcano, ~8 km north of Grenada, has erupted at least 12 times since it was first discovered in 1939, making it the most frequently active volcano in the Lesser Antilles arc. The volcano lies in shallow water close to significant population centres and directly beneath a major shipping route, and as a consequence an understanding of the eruptive behaviour and potential hazards at the volcano is critical. The most recent eruption at Kick em Jenny occurred on December 4 2001, and differed significantly from past eruptions in that it was preceded by an intensive volcanic earthquake swarm. In March 2002 a multi-beam bathymetric survey of the volcano and its surroundings was carried out by the NOAA ship Ronald H Brown. This survey provided detailed three-dimensional images of the volcano, revealing the detailed morphology of the summit area. The volcano is capped by a summit crater which is breached to the northeast and which varies in diameter from 300 to 370 m. The depth to the summit (highest point on the crater rim) is 185 m and the depth to the lowest point inside the crater is 264 m. No dome is present within the crater. The crater and summit region of Kick em Jenny are located at the top of an asymmetrical cone which is about 1300 m from top to bottom on its western side. It lies within what appear to be the remnants of a much larger arcuate collapse structure. An evaluation of the morphology, bathymetry and eruptive history of the volcano indicates that the threat of eruption-generated tsunamis is considerably lower than previously thought, mainly because the volcano is no longer thought to be growing towards the surface. Of more major and immediate concern are the direct hazards associated with the volcano, such as ballistic ejecta, water disturbances and lowered water density due to degassing.  相似文献   
36.
A joint airborne measurement program is being pursued by NRL and NASA Wallops Flight Center to determine the extent to which wind speed and sea surface significant wave height (SWH) can be measured quantitatively and remotely with a short pulse (2 ns), wide-beam (60deg), nadir-looking 3-cm radar. The concept involves relative power measurements only and does not need a scanning antenna, doppler filters, or absolute power calibration. The slopes of the leading and trailing edges of the averaged received power for the pulse limited altimeter are used to infer SWH and surface wind speed. The interpretation is based on theoretical models of the effects of SWH on the leading edge shape and rms sea-surface slope on the trailing-edge shape. The models include the radar system parameters of antenna beam width and pulsewidth. Preliminary experimental results look promising and indicate that it may be possible to design a relatively compact airborne radar to infer, in real-time, the sea surface SWH and surface wind speed.  相似文献   
37.
Southern California faces an imminent freshwater shortage. To better assess the future impact of this water crisis, it is essential that we develop continental archives of past hydrological variability. Using four sediment cores from Lake Elsinore in Southern California, we reconstruct late Holocene (3800 calendar years B.P.) hydrological change using a twentieth-century calibrated, proxy methodology. We compared magnetic susceptibility from Lake Elsinore deep basin sediments, lake level from Lake Elsinore, and regional winter precipitation data over the twentieth century to calibrate the late Holocene lake sediment record. The comparison revealed a strong positive, first-order relationship between the three variables. As a working hypothesis, we suggest that periods of greater precipitation produce higher lake levels. Greater precipitation also increases the supply of detritus (i.e., magnetic-rich minerals) from the lake's surrounding drainage basin into the lake environment. As a result, magnetic susceptibility values increase during periods of high lake level. We apply this modern calibration to late Holocene sediments from the lake's littoral zone. As an independent verification of this hypothesis, we analyzed 18O(calcite), interpreted as a proxy for variations in the precipitation:evaporation ratio, which reflect first order hydrological variability. The results of this verification support our hypothesis that magnetic susceptibility records regional hydrological change as related to precipitation and lake level. Using both proxy data, we analyzed the past 3800 calendar years of hydrological variability. Our analyses indicate a long period of dry, less variable climate between 3800 and 2000 calendar years B.P. followed by a wet, more variable climate to the present. These results suggest that droughts of greater magnitude and duration than those observed in the modern record have occurred in the recent geological past. This conclusion presents insight to the potential impact of future droughts on the over-populated, water-poor region of Southern California.  相似文献   
38.
An algorithm is proposed for denoising the signal induced by cosmic strings in the cosmic microwave background. A Bayesian approach is taken, based on modelling the string signal in the wavelet domain with generalized Gaussian distributions. Good performance of the algorithm is demonstrated by simulated experiments at arcminute resolution under noise conditions including primary and secondary cosmic microwave background anisotropies, as well as instrumental noise.  相似文献   
39.
Recent debates about the state of geography raise valuable questions about how the discipline can and should change in response to shifting institutional realities. Focusing on the breadth and interdisciplinarity of geography, these discussions often overlook the role of pedagogy—particularly graduate training—in adapting the discipline to new institutional landscapes. Drawing on experiences as current and recent geography doctoral students, we identify institutional seedlings of opportunity that can be cultivated toward a spectrum of alternative doctoral training models. These alternatives offer significant opportunities to better prepare early-career geographers for success and to solidify geography's position as a leader in interdisciplinary research.  相似文献   
40.
Fractures are pervasive features within the Earth’s crust and have a significant influence on the multi-physical response of the subsurface. The presence of coherent fracture sets often leads to observable seismic scattering enabling seismic techniques to remotely locate and characterise fracture systems. In this study, we confirm the general scale-dependence of seismic scattering and provide new results specific to shear-wave propagation. We do this by generating full waveform synthetics using finite-difference wave simulation within an isotropic background model containing explicit fractures. By considering a suite of fracture models having variable fracture density and fracture size, we examine the widening effect of wavelets due to scattering within a fractured medium by using several different approaches, such as root-mean-square envelope analysis, shear-wave polarisation distortion, differential attenuation analysis and peak frequency shifting. The analysis allows us to assess the scattering behavior of parametrised models in which the propagation direction is either normal or parallel to the fracture surfaces. The quantitative measures show strong observable deviations for fractures size on the order of or greater than the dominant seismic wavelength within the Mie and geometric scattering regime for both propagation normal and parallel to fracture strike. The results suggest that strong scattering is symptomatic of fractures having size on the same order of the probing seismic wave.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号