首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   3篇
  国内免费   6篇
测绘学   6篇
大气科学   24篇
地球物理   38篇
地质学   48篇
海洋学   31篇
天文学   34篇
自然地理   19篇
  2022年   2篇
  2020年   2篇
  2019年   3篇
  2018年   7篇
  2017年   4篇
  2016年   5篇
  2015年   6篇
  2014年   2篇
  2013年   11篇
  2012年   10篇
  2011年   7篇
  2010年   14篇
  2009年   7篇
  2008年   11篇
  2007年   16篇
  2006年   9篇
  2005年   10篇
  2004年   10篇
  2003年   9篇
  2002年   6篇
  2001年   9篇
  2000年   7篇
  1999年   1篇
  1998年   4篇
  1997年   1篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1992年   4篇
  1990年   3篇
  1989年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
排序方式: 共有200条查询结果,搜索用时 0 毫秒
31.
Fractures are pervasive features within the Earth’s crust and have a significant influence on the multi-physical response of the subsurface. The presence of coherent fracture sets often leads to observable seismic scattering enabling seismic techniques to remotely locate and characterise fracture systems. In this study, we confirm the general scale-dependence of seismic scattering and provide new results specific to shear-wave propagation. We do this by generating full waveform synthetics using finite-difference wave simulation within an isotropic background model containing explicit fractures. By considering a suite of fracture models having variable fracture density and fracture size, we examine the widening effect of wavelets due to scattering within a fractured medium by using several different approaches, such as root-mean-square envelope analysis, shear-wave polarisation distortion, differential attenuation analysis and peak frequency shifting. The analysis allows us to assess the scattering behavior of parametrised models in which the propagation direction is either normal or parallel to the fracture surfaces. The quantitative measures show strong observable deviations for fractures size on the order of or greater than the dominant seismic wavelength within the Mie and geometric scattering regime for both propagation normal and parallel to fracture strike. The results suggest that strong scattering is symptomatic of fractures having size on the same order of the probing seismic wave.  相似文献   
32.
Over the past decade, there have been numerous receiver function studies directed at imaging the lithosphere-asthenosphere boundary (LAB). Although it is generally accepted that receiver function phases observed in these studies are derived from physical mode conversions at depth within the lithosphere-asthenosphere transition, it is still debatable as to whether these phases are directly indicative of the LAB. This is because interpretation of receiver function LAB signals relies on understanding the elastic characteristics of the Earth??s outer thermal boundary layer. The main issues for receiver function imaging are the sharpness of the elastic material property transition and, more importantly, what specifically are the material gradients. To test the various transition models, a forward modelling approach is required that allows accurate waveform synthetics for a range of discontinuous and continuous gradients in anisotropic, elastic media. We present a derivation of the reflection and transmission response for continuous one-dimensional (1-D) gradients in generally anisotropic elastic media. We evaluate the influence of 1-D isotropic and anisotropic elastic gradients on the seismic waveform by comparing numerical results of models for discontinuous and continuous transitions. The results indicate that discontinuous representations using layers each with uniform parameters and with thicknesses on the order of approximately 1/3 to 1/8 of the dominant seismic wavelength can be used to accurately model P-to-S and S-to-P mode conversions due to continuous transitions of both isotropic and anisotropic elastic properties. From a practical point of view, when comparing synthetic modelling with observation, this constraint can be relaxed further. The presence of signal noise and/or the result of receiver function stacking techniques will likely obscure these subtle waveform e ff ects. Hence this study suggests that accurate synthetic waveforms for LAB transitions can be modelled with discontinuous gradient representations using a reasonable number of discrete transition layers with layer thicknesses no greater than 1/2 to 1/3 the dominant seismic wavelength.  相似文献   
33.
Probability of occurrence, hazard intensity and encounter probability are key parameters in the quantitative risk analysis (QRA) of landslides. All are strongly dependent on magnitude of the landslides. As a result, magnitude–frequency analysis should be a part of QRA. Deriving representative magnitude–frequency relationships for debris avalanches and debris flows, however, is difficult. One key problem is illustrated with the example of a unique database from the coastal region of British Columbia, Canada, which was compiled entirely from detailed ground investigations. The magnitude of debris avalanches and debris flows is not an independent statistical quantity, but a function of the scale of a given slope, as characterized by the slope length. Thus, attempting to derive probability and magnitude for a given location or sub-region from a regionally-derived magnitude–frequency curve may lead to incorrect predictions. The same problem is pertinent to the application of the same approach to any type of landslide in which the largest combined dimension of the source volume (including entrainment) is of the same order as the length of the slope. It is recommended that greater emphasis be placed on site-specific geological observations, at the expense of generalized statistics.  相似文献   
34.
On December 4th 2007, a 3-Mm3 landslide occurred along the northwestern shore of Chehalis Lake. The initiation zone is located at the intersection of the main valley slope and the northern sidewall of a prominent gully. The slope failure caused a displacement wave that ran up to 38 m on the opposite shore of the lake. The landslide is temporally associated with a rain-on-snow meteorological event which is thought to have triggered it. This paper describes the Chehalis Lake landslide and presents a comparison of discontinuity orientation datasets obtained using three techniques: field measurements, terrestrial photogrammetric 3D models and an airborne LiDAR digital elevation model to describe the orientation and characteristics of the five discontinuity sets present. The discontinuity orientation data are used to perform kinematic, surface wedge limit equilibrium and three-dimensional distinct element analyses. The kinematic and surface wedge analyses suggest that the location of the slope failure (intersection of the valley slope and a gully wall) has facilitated the development of the unstable rock mass which initiated as a planar sliding failure. Results from the three-dimensional distinct element analyses suggest that the presence, orientation and high persistence of a discontinuity set dipping obliquely to the slope were critical to the development of the landslide and led to a failure mechanism dominated by planar sliding. The three-dimensional distinct element modelling also suggests that the presence of a steeply dipping discontinuity set striking perpendicular to the slope and associated with a fault exerted a significant control on the volume and extent of the failed rock mass but not on the overall stability of the slope.  相似文献   
35.
The GPS Toolbox     
The GPS Toolbox is dedicated to highlighting algorithms utilized by GPS engineers and scientists. If you have an interesting algorithm you would like to share with our readers or if you have a topic you would like to see covered in a future column, contact us at gps-toolbox@ngs.noaa.gov. To comment on the algorithms presented here, or to leave a request for an algorithm you may be looking for, visit our Web site (http://www.ngs.noaa.gov/gps-toolbox). ? 2000 John Wiley & Sons, Inc.  相似文献   
36.
37.
38.
Gold mineralisation in the White River area, 80 km south of the highly productive Klondike alluvial goldfield, is hosted in amphibolite facies gneisses in the same Permian metamorphic pile as the basement for the Klondike goldfield. Hydrothermal fluid which introduced the gold was controlled by fracture systems associated with middle Cretaceous to early Tertiary extensional faults. Gold deposition occurred where highly fractured and chemically reactive rocks allowed intense water–rock interaction and hydrothermal alteration, with only minor development of quartz veins. Felsic gneisses were sericitised with recrystallisation of hematite and minor arsenic mobility, and extensively pyritised zones contain gold and minor arsenic (ca 10 ppm). Graphitic quartzites (up to 5 wt.% carbon) caused chemical reduction of mineralising fluids, with associated recrystallisation of metamorphic minerals (graphite, pyrrhotite, pyrite, chalcopyrite) in host rocks and veins, and introduction of arsenic (up to 1 wt.%) to form arsenopyrite in veins and disseminated through host rock. Veins have little or no hydrothermal quartz, and up to 19 wt.% carbon as graphite. Late-stage oxidation of arsenopyrite in some graphitic veins has formed pharmacosiderite. Gold is closely associated with disseminated and vein sulphides in these two rock types, with grades of up to 3 ppm on the metre scale. Other rock types in the White River basement rocks, including biotite gneiss, hornblende gneiss, pyroxenite, and serpentinite, have not developed through-going fracture systems because of their individual mineralogical and rheological characteristics, and hence have been little hydrothermally altered themselves, have little hydrothermal gold, and have restricted flow of fluids through the rock mass. Some small post-metamorphic quartz veins (metre scale) have been intensely fractured and contain abundant gold on fractures (up to 40 ppm), but these are volumetrically minor. The style of gold mineralisation in the White River area is younger than, and distinctly different from, that of the Klondike area. Some of the mineralised zones in the White River area resemble, mineralogically and geochemically, nearby coeval igneous-hosted gold deposits, but this resemblance is superficial only. The White River mineralisation is an entirely new style of Yukon gold deposit, in which host rocks control the mineralogy and geochemistry of disseminated gold, without quartz veins.  相似文献   
39.
The Hope Slide, which occurred on January 9, 1965, involved an estimated 47-Mm3 of meta-volcanics and intrusive rocks. Previous workers reported the presence of tectonic structures (faults and shear zones) along the failure surface at the Hope Slide. These tectonic features were investigated in detail to assess their effects on rock-mass quality and the related implications for slope stability. This paper integrates basic field and laboratory concepts from structural and engineering geology. Subdividing the failure area into structural domains allowed distinct discontinuity sets to be associated with specific tectonic structures. The Geological Strength Index (GSI) was used to estimate the rock-mass damage related to the tectonic structures. Low GSI values were seen to outline tectonic damage zones. Point-load tests were used to characterise the compressive strength of rocks adjacent to the tectonic structures. Strength anisotropy, tentatively attributed to damage caused by a large shear zone, was observed in greenstone samples. Seepage zones along the failure surface were observed preferentially along shallow discontinuities that dipped downslope and in rock masses of good quality (GSI > 40). An alternative morphology of the slope failure is proposed by distinguishing between the extent of the surficial damage due to the rock-slope failure and the zone of failed material (depletion zone). For the first time, a kinematic mechanism for the Hope Slide is proposed, based on a preliminary 3-dimensional block model. A pre-1965 DEM was produced from estimates of material lost and gained as reported by previous workers. The pre-1965 DEM revealed that the tectonic structures recognised during fieldwork bounded the material that failed in the 1965 event.  相似文献   
40.
Kick em Jenny submarine volcano, ~8 km north of Grenada, has erupted at least 12 times since it was first discovered in 1939, making it the most frequently active volcano in the Lesser Antilles arc. The volcano lies in shallow water close to significant population centres and directly beneath a major shipping route, and as a consequence an understanding of the eruptive behaviour and potential hazards at the volcano is critical. The most recent eruption at Kick em Jenny occurred on December 4 2001, and differed significantly from past eruptions in that it was preceded by an intensive volcanic earthquake swarm. In March 2002 a multi-beam bathymetric survey of the volcano and its surroundings was carried out by the NOAA ship Ronald H Brown. This survey provided detailed three-dimensional images of the volcano, revealing the detailed morphology of the summit area. The volcano is capped by a summit crater which is breached to the northeast and which varies in diameter from 300 to 370 m. The depth to the summit (highest point on the crater rim) is 185 m and the depth to the lowest point inside the crater is 264 m. No dome is present within the crater. The crater and summit region of Kick em Jenny are located at the top of an asymmetrical cone which is about 1300 m from top to bottom on its western side. It lies within what appear to be the remnants of a much larger arcuate collapse structure. An evaluation of the morphology, bathymetry and eruptive history of the volcano indicates that the threat of eruption-generated tsunamis is considerably lower than previously thought, mainly because the volcano is no longer thought to be growing towards the surface. Of more major and immediate concern are the direct hazards associated with the volcano, such as ballistic ejecta, water disturbances and lowered water density due to degassing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号