首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
大气科学   1篇
地球物理   11篇
地质学   4篇
海洋学   6篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2016年   2篇
  2014年   2篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
排序方式: 共有22条查询结果,搜索用时 803 毫秒
11.
In recent years, several attempts to stabilize the beach by control of the percolation of water have been proposed. However, morphodynamics in the surf zone is still not clear because of the complexity of wave actions and sediment transport. Especially, there is a little research on gravel beach morphodynamics including wave breaking in the surf zone. The present study investigates experimentally how groundwater level influences topographic changes in a gravel beach and simulates numerically the wave fields and flow patterns in the surf zone, considering the porosity of the media and the presence of groundwater. In experiments, water-level control tank was designed to control the simulated groundwater elevation and the wave flume was divided into two parts to maintain a constant mean water level. The experimental results show that the berm formed in the upper portion of the shoreline moves up the beach as the groundwater level falls and the lower the groundwater level, the steeper the beach surface. The numerical model was developed to clarify these features capable of simulating the difference of groundwater and mean water level. Numerical results showed different flow patterns due to the groundwater elevation; wave run-up weakens and wave run-down strengthens by the seaward currents caused by elevated groundwater. These deformations of the flow pattern explain well how the beach profile is affected by the groundwater elevation.  相似文献   
12.
Current floating structures require more reliable and higher anchoring capacities because of their increased size. A suction anchor is one of the most popular anchors for a floating system. In this study, the behavior of a suction anchor installed in cohesionless soil was investigated when the anchor was subjected to mainly a horizontal load. Three-dimensional finite element numerical analyses were carried out using ABAQUS, and three centrifuge tests were performed to calibrate the numerical analyses. A parametric study with different dimensions and loading points for the suction anchor was conducted. The horizontal capacity of the suction anchor was estimated, and the soil reaction distribution was analyzed when the load was applied at the optimal point. Based on the results, an analytical equation for calculating the horizontal capacity of a suction anchor was proposed that can be easily adopted for design.  相似文献   
13.
Flexibility of underground structures relative to the surrounding medium, referred to as the flexibility ratio, is an important factor that influences their dynamic interaction. This study investigates the flexibility effect of a box-shaped subway tunnel, resting directly on bedrock, on the ground surface acceleration response using a numerical model verified against dynamic centrifuge test results. A comparison of the ground surface acceleration response for tunnel models with different flexibility ratios revealed that the tunnels with different flexibility ratios influence the acceleration response at the ground surface in different ways. Tunnels with lower flexibility ratios have higher acceleration responses at short periods, whereas tunnels with higher flexibility ratios have higher acceleration responses at longer periods. The effect of the flexibility ratio on ground surface acceleration is more prominent in the high range of frequencies. Furthermore, as the flexibility ratio of the tunnel system increases, the acceleration response moves away from the free field response and shifts towards the longer periods. Therefore, the flexibility ratio of the underground tunnels influences the peak ground acceleration (PGA) at the ground surface, and may need to be considered in the seismic zonation of urban areas.  相似文献   
14.
This study employed direct numerical simulation to simulate the fully nonlinear interaction between the water waves, the submerged breakwater, and the seabed under differing wave conditions. In the numerical simulation, the laminar flow condition in the seabed was applied to evaluate the more exact fluid resistance acting on the porous media. Varying incident wave conditions were applied to the flow field resulting from the wave–structure–seabed interaction, and the variation in the pore water pressure beneath the submerged breakwater was investigated along the cross-section of the submerged breakwater. Structural safety and scouring were also considered on the basis of the numerical results for the flow field around the structure and the variation of the pore water pressure.  相似文献   
15.
The investigation on the seismic behavior of dams becomes crucial but is limited to lack of experimental or field data. This paper aims to experimentally simulate two major dam types of earth-core rock-fill dam and concrete-faced rock-fill dam by dynamic centrifuge tests to investigate the seismic response of the dam. A series of staged centrifuge tests was performed by applying real earthquake records from 0.05 to 0.5g. The distributions of amplification ratio differed depending on the magnitude of earthquake loading and the zoning condition. The amplification ratio at the crest increased in the bedrock acceleration that exceeds 0.3g and strongly influenced by the loosening behavior of the upper part. The residual settlements and horizontal displacement at the dam crest were small. Shallow surface sliding was dominant failure. The maximum tensile stress on the face slab by dynamic loading occurred at a height of around 4/5 near the upstream water level. Finally, two-dimensional numerical simulations were performed in an effort to simulate the centrifuge models. The centrifuge tests and numerical analysis obtained mostly comparable results, thus confirming that centrifuge modeling reasonably simulates the seismic behavior of dams.  相似文献   
16.
The uphole method is a field seismic test which uses receivers on the ground surface and an underground source. A modified form of the uphole method is introduced in order to obtain efficiently the shear wave velocity (VS) profile of a site. This method is called the standard penetration test (SPT)-uphole method because it uses the impact energy of the split spoon sampler in the SPT test as a source. Since the SPT-uphole method can be performed simultaneously with the SPT test it is economical and not labor intensive compared to the original uphole methods which use small explosives or a mechanical source. Field testing and interpretation procedures for the proposed method are described. To obtain reliable travel time information of the shear wave, the first peak point of the shear wave using two component geophones is recommended. Through a numerical study using the finite element method (FEM), the procedure of the proposed method was verified. Finally, the SPT-uphole method was performed at several sites, and the field applicability of the proposed method was verified by comparing the VS profiles determined by the SPT-uphole method with the profiles determined by the downhole, the spectral analysis of surfaces waves (SASW) method and from the SPT-N values.  相似文献   
17.
Site characterization and site-specific ground response analyses were conducted at two representative inland areas in Korea. In situ tests included 25 boring investigations, 7 crosshole tests, 18 downhole tests and 41 SASW tests, and in the laboratory, resonant column tests were performed. The soil deposits in Korea, which were shallower and stiffer than those in the western US, were examined. The fundamental site periods were distributed in the narrow band ranging from 0.1 to 0.4 s. Most sites were designated as site classes C and D based on the mean shear wave velocity of the upper 30 m from the current Korean seismic design guide. Based on the ratio of the acceleration response spectra of ground surface to rock-outcrop, short-period (0.1–0.5 s) site coefficient, Fa ranged from 1.0 to 2.7, and mid-period (0.4–2.0 s) site coefficient, Fv ranged from 1.0 to 1.6, regardless of the input rock outcrop acceleration levels of 0.05 and 0.14 g. The site coefficients specified in the Korean seismic design guide, which is similar to NEHRP provisions and UBC, underestimate the ground motion in the short-period band and overestimate the ground motion in the mid-period band. These differences can be explained by the differences in the depth to bedrock and the soil stiffness profile between Korea and western US. Also, the site coefficients should be re-evaluated accounting for the local geologic conditions on the Korean peninsula.  相似文献   
18.
The spectral analysis of surface waves (SASW) method is an in situ, seismic method for determining the shear wave velocity (or maximum shear modulus) profile of a site. The SASW test consists of three steps: field testing, evaluation of dispersion curve by phase unwrapping method, and determination of shear modulus profile by inversion process. In general, field testing and dispersion curve evaluation are regarded as simple work. However, because of characteristic of Fourier transform used in the conventional phase unwrapping method, dispersion curve is sensitive to background noise and body waves in the low frequency range. Furthermore, under some field conditions such as pavement site, the usual phase unwrapping method can lead to erroneous dispersion curve. To overcome problem of the usual phase unwrapping method, in this paper, a new method of determining dispersion curve for SASW method was applied using time–frequency analysis based on harmonic wavelet transform as an alternative method of a current phase unwrapping method. To estimate the applicability of proposed method to SASW method, numerical simulations at various layered soil and pavement profiles were performed and the dispersion curves by proposed method are more reliable than those by the usual phase unwrapping method.  相似文献   
19.
An artificial beach has been constructed compensating for losing of the natural one caused by the development of coastal area. In this paper, the hydraulic model tests are carried out to investigate the suction phenomenon on the artificial beach constituted of rubble mound breakwater with gravel and the reclaimed sand area. In addition, the numerical model for waves, structures and seabed interaction as well as the numerical method based on the up approximation of the Biot equations is developed for investigation of suction mechanism. After verification of the numerical models by comparing numerical results with experimental data, the numerical models are further used to clarify the detailed suction mechanism of the reclaimed sand. The factors that affect the suction phenomenon are examined experimentally and their critical values are presented. Also, it can be pointed out that the vertical discharge velocity as well as the volumetric strain around the still water level of the boundary between the breakwater and the beach gets up to the critical value, the reclaimed sand starts to flow out to the offshore, and it finally leads to caves and cave-ins in the reclaimed zone.  相似文献   
20.
In the design procedure for a retaining wall, the pseudo-static method has been widely used and dynamic earth pressure is calculated by the Mononobe–Okabe method, which is an extension of Coulomb’s earth pressure theory computed by force equilibrium. However, there is no clear empirical basis for treating the seismic force as a static force, and recent experimental research has shown that the Mononobe–Okabe method is quite conservative, and there exists a discrepancy between the assumed conditions and real seismic behavior during an earthquake. Two dynamic centrifuge tests were designed and conducted to reexamine the Mononobe–Okabe method and to evaluate the seismic lateral earth pressure on an inverted T-shape flexible retaining wall with a dry medium sand backfill. Results from two sets of dynamic centrifuge experiments show that inertial force has a significant impact on the seismic behavior on the flexible retaining wall. The dynamic earth pressure at the time of maximum moment during the earthquake was not synchronized and almost zero. The relationship between the back-calculated dynamic earth pressure coefficient at the time of maximum dynamic wall moment and the peak ground acceleration obtained from the wall base peak ground acceleration indicates that the seismic earth pressure on flexible cantilever retaining walls can be neglected at accelerations below 0.4 g. These results suggest that a wall designed with a static factor of safety should be able to resist seismic loads up to 0.3–0.4 g.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号