首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3243篇
  免费   108篇
  国内免费   90篇
测绘学   70篇
大气科学   402篇
地球物理   811篇
地质学   1004篇
海洋学   647篇
天文学   299篇
综合类   46篇
自然地理   162篇
  2023年   12篇
  2022年   22篇
  2021年   45篇
  2020年   47篇
  2019年   63篇
  2018年   134篇
  2017年   124篇
  2016年   139篇
  2015年   87篇
  2014年   171篇
  2013年   220篇
  2012年   140篇
  2011年   203篇
  2010年   190篇
  2009年   190篇
  2008年   164篇
  2007年   176篇
  2006年   146篇
  2005年   122篇
  2004年   105篇
  2003年   96篇
  2002年   98篇
  2001年   76篇
  2000年   79篇
  1999年   55篇
  1998年   45篇
  1997年   41篇
  1996年   25篇
  1995年   37篇
  1994年   19篇
  1993年   17篇
  1992年   21篇
  1991年   18篇
  1990年   18篇
  1989年   13篇
  1988年   14篇
  1987年   24篇
  1986年   15篇
  1985年   15篇
  1984年   28篇
  1983年   31篇
  1982年   22篇
  1981年   17篇
  1980年   25篇
  1979年   12篇
  1978年   7篇
  1977年   16篇
  1975年   15篇
  1974年   10篇
  1973年   7篇
排序方式: 共有3441条查询结果,搜索用时 15 毫秒
611.
Occurrence, physiological responses and toxicity of nickel in plants   总被引:1,自引:0,他引:1  
The focus of the review is on the specific aspects of nickel’s effects on growth, morphology, photosynthesis, mineral nutrition and enzyme activity of plants. The mobility of nickel in the environment and the consequent contamination in soil and water is of great concern. Also, the detrimental effects of excessive nickel on plant growth have been well known for many years. Toxic effects of nickel on plants include alterations in the germination process as well as in the growth of roots, stems and leaves. Total dry matter production and yield was significantly affected by nickel and also causes deleterious effects on plant physiological processes, such as photosynthesis, water relations and mineral nutrition. Nickel strongly influences metabolic reactions in plants and has the ability to generate reactive oxygen species which may cause oxidative stress. More recent evidence indicates that nickel is required in small amounts for normal plant growth and development. Hence, with the increasing level of nickel pollution in the environment, it is essential to understand the functional roles and toxic effects of nickel in plants.  相似文献   
612.
Core sediments from three disturbed boreholes (JOR, GHAT, and RAJ) and two undisturbed boreholes (DW1 and DW2) were collected in the study area of the Chapai-Nawabganj district of northwestern Bangladesh for geochemical analyses. In the study area, groundwater samples from fourteen As-contained private wells and five nested piezometers at both the DW1 and DW2 boreholes were also collected and analyzed. The groundwater arsenic concentrations in the uppermost aquifer (10–40 m of depth) range from 3 to 315 μg/L (mean 47.73 ± 73.41 μg/L), while the arsenic content in sediments range from 2 to 14 mg/kg (mean 4.36 ± 3.34 mg/kg). An environmental scanning electron microscope (ESEM) with an energy dispersive X-ray spectrometer was used to investigate the presence of major and trace elements in the sediments. Groundwaters in the study area are generally the Ca–HCO3 type with high concentrations of As, but low levels of Fe, Mn, NO3 ? and SO 4 ?2 . The concentrations of As, Fe, Mn decrease with depth in the groundwater, showing vertical geochemical variations in the study area. Statistical analysis clearly shows that As is closely associated with Fe and Mn in the sediments of the JOR core (r = 0.87, p < 0.05 for Fe and r = 0.78, p < 0.05 for Mn) and GHAT core (r = 0.95, p < 0.05 for Fe and r = 0.93, p < 0.05 for Mn), while As is not correlated with Fe and Mn in groundwater. The comparatively low Fe and Mn concentrations in some groundwater and the ESEM image revealed that siderite precipitated as a secondary mineral on the surface of the sediment particles. The correlations along with results of sequential extraction experiments indicated that reductive dissolution of FeOOH and MnOOH represents a mechanism for releasing arsenic into the groundwater.  相似文献   
613.
Various factors, such as the volumetric fraction of constituents, mineralogy, and pore fluids, affect heat flow in granular materials. Although the stress applied on granular materials controls the formation of major pathways for heat flow, few studies have focused on a detailed investigation of its significance with regard to the thermal conductivity and anisotropy of the materials. This paper presents a numerical investigation of the stress-induced evolution of anisotropic thermal conductivity of dry granular materials with supplementary experimental results. Granular materials under a variety of stress conditions in element testing are analyzed by the three-dimensional discrete element method, and quantitative variations in their anisotropic effective thermal conductivity are calculated via the network model and conductivity tensor measurements. Results show that the directional development of contact area and fabric under anisotropic stress conditions leads to the evolution of anisotropy in thermal conductivity. The anisotropy induced in thermal conductivity by shear stress is higher than that induced by compressive stress because shear stress causes more significant changes in microstructural configurations and boundary conditions. The shear-stress-induced evolution of anisotropy between principal thermal conductivities depends on dilatancy as well as shearing mode, and the shear-driven discontinuity localizes the conductivity. Factors involved in the stress-induced evolution and their implications on the thermal conductivity characterization are discussed.  相似文献   
614.
This study attempted to analyze flow duration in a basin using a method to estimate environmental flow developed by the International Water Management Institute, and simulate the effects of runoff characteristics unique to a river and flow variability due to basin developments on aquatic ecosystems. To do so, KModSim, a simulation model for basin-wide water distribution, was used to assess flow duration in the Geum River basin, one of the four major river basins in Korea, by environmental management class (EMC). Flow duration curves by EMC at Sutong and Gongju sites were derived on the basis of natural flow in the Geum River basin. As a result, they were found to be consistent with the results of previous studies. Time series of mean monthly flow data by EMC were plotted together with those of simulated flow data by reservoir operation scenario; Sutong and Gongju points both showed flow behaviors corresponding almost to “A” in EMC. In addition, the characteristics of habitats by species of fish were identified through monitoring fish habitat at the Sutong site, so that optimal ecological flow rate was estimated. For this purpose, relations between flow discharge and weighted usable area for Coreoleuciscus splendidus and Pseudopungtungia nigra were projected using physical habitat simulation system, and EMCs consistent with flow duration curves (estimated taking in-stream flow) were assessed. The results or findings reported in this study are expected to serve as basic data for making a plan to efficiently monitor and manage aquatic ecosystems in the Geum River basin.  相似文献   
615.
In the present study, stabilization treatment using waste resource stabilizers was performed for soil contaminated with As and heavy metals (Pb and Cu). Calcined oyster shell (COS) and coal mine drainage sludge (CMDS) were used as a mixed stabilizing agent for a wet-curing duration of 28 days. After the stabilization treatment, the treatment process efficiency was evaluated by the results of various batch- and column-leaching tests. Neutral and weak acid extraction methods, such as water-soluble extraction and SPLP, did not exhibit satisfactory results for heavy metal stabilization, even if they showed very low leachability. On the other hand, TCLP and 0.1 M HCl extraction showed that the stabilizers significantly reduced the amount of heavy metals leached from the soil, which strongly supports the thesis that the stabilization treatment is efficient in the acidic leaching conditions that were explored. Specifically, in the 0.1 M HCl extraction, the reduction efficiencies of As, Pb, and Cu leachings were more than 90 %, compared with control experiments. This study demonstrates that the application of waste resources for the stabilization of As and heavy metals is feasible. However, some limitations observed in the experiments should be considered in future studies, such as the mobilization of alkali-soluble elements, and in particular, exchangeable fractions of Cu. In addition, the treatment efficiency can be evaluated by different leaching methods, which suggests that multidirectional approaches are required for the proper evaluation of stabilization treatment.  相似文献   
616.
The southwestern region of Australia contains the Yilgarn Craton that has been exposed to subaerial weathering since mid-Proterozoic. The gently undulating landscape experienced lateritic weathering so that today variably dissected, deep in situ isovolumetrically weathered regolith is widespread. Imposition of a more arid climate since the Miocene with the cessation of effective external drainage has resulted in substantial geochemical modification of the highly porous regolith. This vast pore volume acts as a reservoir for complex solutions that may be highly saline, extremely acid to alkaline and reducing. Diverse precipitates have formed in the regolith including widespread occurrence of silcrete, calcrete, dolocrete, ferricrete and gypcrete together with localised occurrences of pyrite, alunite, jarosite, barite, halite and other salts. Clearing of bush land for agriculture in the 20th century increased recharge so that rising chemically active groundwaters are damaging farmland and infrastructure throughout the region. To cite this article: B. Gilkes et al., C. R. Geoscience 335 (2003).  相似文献   
617.
There is a great hiatus between Ordovician and Carboniferous strata in the Northeast China and Korean Peninsula. In order to understand geology and tectonic evolution, and to find out the similarities and differences in both regions, two sections in the Western Hill near Beijing in NE China and several sections in the Korean Peninsula were selected to examine their geologic boundaries between Lower and Upper Paleozoic strata to compare their characteristic features. At four sites in the two sections in the Western Hill near Beijing were examined their contact relations. The Hui Yu section is the same horizon where one site is top of a quarry hill and the other of down hill. Mid-Carboniferous Qingshuijian Formation rests on the Ordovician Majiagou Formation. Limestone beds are more commonly intercalated with shale and sandstone at site 2 of the Hui Yu section, while at site 1, conglomerate beds are dominant. Site 1 of the Se Shu Fen section shows eroded and concealed karst topography and conglomerate beds are intercalated within shale beds. Silurian and Devonian strata are absent in these areas. In the Korean Peninsula, most O-C contacts occur between Ordovician limestone formation and Carboniferous strata, although Silurian strata occur beneath the Carboniferous strata in the Jeongseon area and Pyeongnam Basin. Most contact relations are parallel unconformity and angular unconformity is rarely seen. The O-C relations in both regions are similar to each other, and these indicate that the Korean Peninsula was located near or belonged to the Sino-Korean paraplatform during Paleozoic time.  相似文献   
618.
619.
Fluxes of nitrous oxide (N2O) from different land use patterns (matured forest, secondary forest, grassland and cropland) in a subtropical karst region of Guizhou Province, Southwest China, were measured for one year with a closed static chamber technique and by gas chromatography. The results showed that soil under different land uses was a source of atmospheric N2O. The cropland was a source with relatively high N2O as compared to forest and grassland, but no significant differences were observed. N2O emissions from soils varied with land use change and fertilizer application. There were two peaks of N2O flux occurred following the combination of two obvious precipitation and fertilizer events in the cultivated land. Converting from the matured forest to secondary forest tended to increase annual emissions of N2O (from 1.40 to 1.65 kg N ha -1 a -1 ), while changing land use from secondary forest to scattered grassland tended to decrease annual emissions of N2O slightly (from 1.65 to 1.45 kg N ha -1 a -1 ). Our range of cumulative annual N2O emission across different land uses (1.40-1.91 kg N ha -1 a -1 ) in a karst region is in general agreement with previously published data in a non-karst region. However, in the maize field, N2O emission factor (EF) was 0.34% for fertilizer application, which is about 71.2% lower than the IPCC default value. It is suggested that current IPCC (Intergovernmental Panel on Climate Change) EF methodology could overestimate N2O emission from the karstic cropland. Anyway, the N2O emission from cropland in the karst region would contribute significantly to the global N2O budget, so reducing fertilization frequency during the crop growing season could lead to a decrease in N2O emission in the whole year.  相似文献   
620.
Machida I  Lee SH 《Ground water》2008,46(4):532-537
We observed long-term changes in the concentrations of dissolved ions in ground water caused by leachate from new volcanic ejecta deposited on the ground surface of the volcanic Miyakejima Island, Japan. Water samples were collected from nine wells and two rain collectors over a period of more than 10 years, and samples of runoff water were collected periodically. The samples were analyzed for temperature, pH, alkalinity, Cl, and SO42−; some of the samples were also analyzed for δ13C. Because the leachate from the volcanic ejecta contained sulfate, we recorded an increase in SO42 concentrations in the (unconfined) well water. The increase in SO42 was initially detected between less than 1.4 and 5.2 years after the eruption, showing peak concentrations from 2.4 to 6.4 years after the eruption. This delayed response reflects the transit time of downward-moving SO42 in the vadose zone, corresponding to an apparent movement rate of 0.4 to 7.2 cm/d. The rate relates to the mean recharge, represented as a fraction of local mean rainfall, and is calculated using the Cl balance method. The magnitude of the recorded increases reflects the volume of volcanic mudflow on the ground surface within the basin. For the management of ground water after an eruption, it is therefore important to know the chemical properties of the volcanic ejecta and the spatial distribution of mudflow to estimate the magnitude of the effect of ejecta on ground water quality.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号