首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   424篇
  免费   8篇
  国内免费   4篇
测绘学   7篇
大气科学   44篇
地球物理   97篇
地质学   183篇
海洋学   37篇
天文学   52篇
综合类   2篇
自然地理   14篇
  2024年   2篇
  2023年   2篇
  2022年   3篇
  2021年   2篇
  2020年   7篇
  2019年   2篇
  2018年   9篇
  2017年   7篇
  2016年   6篇
  2015年   10篇
  2014年   19篇
  2013年   37篇
  2012年   17篇
  2011年   22篇
  2010年   20篇
  2009年   39篇
  2008年   25篇
  2007年   18篇
  2006年   32篇
  2005年   17篇
  2004年   14篇
  2003年   7篇
  2002年   19篇
  2001年   7篇
  2000年   11篇
  1999年   5篇
  1998年   5篇
  1997年   7篇
  1996年   4篇
  1995年   6篇
  1994年   9篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   4篇
  1988年   4篇
  1987年   5篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1980年   2篇
  1976年   2篇
  1975年   4篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
  1966年   1篇
  1964年   1篇
排序方式: 共有436条查询结果,搜索用时 15 毫秒
31.
Active and break phases of the Indian summer monsoon are associated with sea surface temperature (SST) fluctuations at 30–90 days timescale in the Arabian Sea and Bay of Bengal. Mechanisms responsible for basin-scale intraseasonal SST variations have previously been discussed, but the maxima of SST variability are actually located in three specific offshore regions: the South-Eastern Arabian Sea (SEAS), the Southern Tip of India (STI) and the North-Western Bay of Bengal (NWBoB). In the present study, we use an eddy-permitting 0.25° regional ocean model to investigate mechanisms of this offshore intraseasonal SST variability. Modelled climatological mixed layer and upper thermocline depth are in very good agreement with estimates from three repeated expendable bathythermograph transects perpendicular to the Indian Coast. The model intraseasonal forcing and SST variability agree well with observed estimates, although modelled intraseasonal offshore SST amplitude is undere-stimated by 20–30 %. Our analysis reveals that surface heat flux variations drive a large part of the intraseasonal SST variations along the Indian coastline while oceanic processes have contrasted contributions depending of the region considered. In the SEAS, this contribution is very small because intraseasonal wind variations are essentially cross-shore, and thus not associated with significant upwelling intraseasonal fluctuations. In the STI, vertical advection associated with Ekman pumping contributes to ~30 % of the SST fluctuations. In the NWBoB, vertical mixing diminishes the SST variations driven by the atmospheric heat flux perturbations by 40 %. Simple slab ocean model integrations show that the amplitude of these intraseasonal SST signals is not very sensitive to the heat flux dataset used, but more sensitive to mixed layer depth.  相似文献   
32.
In adapting the prestack migration technique used in seismic imaging to the inversion of ground‐penetrating radar (GPR) from time‐ to depth‐sections, we show that the theoretical integral formulation of the inversion can be applied to electromagnetic problems, albeit with three assumptions. The first two assumptions concern the electromagnetic characteristics of the medium, primarily that the medium must be perfectly resistive and non‐dispersive, and the third concerns the antennae radiation pattern, which is taken to be 2D. The application of this adaptation of the inversion method is confirmed by migrating actual GPR measurements acquired on the test site of the Laboratoire Central des Ponts et Chaussées. The results show good agreement with the geometry of the structures in the medium and confirm that the possible departure from the assumption of a purely resistive medium has no visible effect on the information concerning the geometry of scattering and reflecting structures. The field experiments also show that prestack migration processing is sufficiently robust with regard to the assumption of a non‐dispersive medium. The assumption of a 2D antennae radiation pattern, however, produces artefacts that could be significant for laterally heterogeneous media. Nevertheless, where the medium is not highly laterally heterogeneous, the migration gives a clear image of the scattering potential due to the geometry of structural contrasts in the medium; the scatterers are well focused from diffraction hyperbolae and well localized. Spatial geometry has limited dimensional accuracy and positions are located with a maximum error equal to the minimum wavelength of the signal bandpass. Objects smaller than one wavelength can nevertheless be detected and well focused if their dielectric contrasts are sufficiently high, as in the case of iron or water in gneiss gravels. Furthermore, the suitability of multi‐offset protocols to estimate the electromagnetic propagating velocity and to decrease the non‐coherent noise level of measurements is confirmed. Our velocity estimation is based on the semblance calculation of multi‐offset migrated images, and we confirmed the relevance of this quantification method using numerical data. The signal‐to‐noise ratio is improved by summing multi‐offset results after the addition of random noise on measurements. Thus the adaptation of prestack migration to multi‐offset radar measurements significantly improves the resolution of the scattering potential of the medium. Limitations associated with the methods used here suggest that 3D algorithms should be applied to strongly laterally heterogeneous media and further studies concerning the waveform inversion are necessary to obtain information about the electric nature of the medium.  相似文献   
33.
We analyze the light curves of the recent solar eclipses measured by the Herzberg channel (200?–?220 nm) of the Large Yield RAdiometer (LYRA) onboard Project for OnBoard Autonomy (PROBA2). The measurements allow us to accurately retrieve the center-to-limb variations (CLV) of the solar brightness. The formation height of the radiation depends on the observing angle, so the examination of the CLV provide information about a broad range of heights in the solar atmosphere. We employ the 1D NLTE radiative transfer COde for Solar Irradiance (COSI) to model the measured light curves and corresponding CLV dependencies. The modeling is used to test and constrain the existing 1D models of the solar atmosphere, e.g. the temperature structure of the photosphere and the treatment of the pseudo-continuum opacities in the Herzberg continuum range. We show that COSI can accurately reproduce not only the irradiance from the entire solar disk, but also the measured CLV. Hence it can be used as a reliable tool for modeling the variability of the spectral solar irradiance.  相似文献   
34.
This study presents an analysis of climate-change impacts on the water resources of two basins located in northern France, by integrating four sources of uncertainty: climate modelling, hydrological modelling, downscaling methods, and emission scenarios. The analysis focused on the evolution of the water budget, the river discharges and piezometric heads. Seven hydrological models were used, from lumped rainfall-discharge to distributed hydrogeological models, and led to quite different estimates of the water-balance components. One of the hydrological models, CLSM, was found to be unable to simulate the increased water stress and was, thus, considered as an outlier even though it gave fair results for the present day compared to observations. Although there were large differences in the results between the models, there was a marked tendency towards a decrease of the water resource in the rivers and aquifers (on average in 2050 about ?14 % and ?2.5 m, respectively), associated with global warming and a reduction in annual precipitation (on average in 2050 +2.1 K and ?3 %, respectively). The uncertainty associated to climate models was shown to clearly dominate, while the three others were about the same order of magnitude and 3–4 times lower. In terms of impact, the results found in this work are rather different from those obtained in a previous study, even though two of the hydrological models and one of the climate models were used in both studies. This emphasizes the need for a survey of the climatic-change impact on the water resource.  相似文献   
35.
The production of organic matter and calcium carbonate by a dense population of the brittle star Acrocnida brachiata (Echinodermata) was calculated using demographic structure, population density, and relations between the size (disk diameter) and the ash-free dry weight (AFDW) or the calcimass. During a 2-year survey in the Bay of Seine (Eastern English Channel, France), organic production varied from 29 to 50 gAFDW m−2 year−1 and CaCO3 production from 69 to 104 gCaCO3 m−2 year−1. Respiration was estimated between 1.7 and 2.0 molCO2 m−2 year−1. Using the molar ratio (ψ) of CO2 released: CaCO3 precipitated, this biogenic precipitation of calcium carbonate would result in an additional release between 0.5 and 0.7 molCO2 m−2 year−1 that represented 23% and 26% of total CO2 fluxes (sum of calcification and respiration). The results of the present study suggest that calcification in temperate shallow environments should be considered as a significant source of CO2 to seawater and thus a potential source of CO2 to the atmosphere, emphasizing the important role of the biomineralization (estimated here) and dissolution (endoskeletons of dead individuals) in the carbon budget of temperate coastal ecosystems.  相似文献   
36.
In this paper we examine OTL displacements detected by GPS stations of a dedicated campaign and validate ocean tide models. Our area of study is the continental shelf of Brittany and Cotentin in France. Brittany is one of the few places in the world where tides provoke loading displacements of ∼10–12 cm vertically and a few cm horizontally. Ocean tide models suffer from important discrepancies in this region. Seven global and regional ocean tide models were tested: FES2004 corrected for K2, TPXO.7.0, TPXO.6.2, GOT00.2, CSR4.0, NAO.99b and the most recent regional grids of the North East Atlantic (NEA2004). These gridded amplitudes and phases of ocean tides were convolved in order to get the predicted OTL displacements using two different algorithms. Data over a period of 3.5 months of 8 GPS campaign stations located on the north coast of Brittany are used, in order to evaluate the geographical distribution of the OTL effect. We have modified and implemented new algorithms in our GPS software, GINS 7.1. GPS OTL constituents are estimated based on 1-day batch solutions. We compare the observed GPS OTL constituents of M2, S2, N2 and K1 waves with the selected ocean tide models on global and regional grids. Large phase-lag and amplitude discrepancies over 20° and 1.5 cm in the vertical direction in the semi-diurnal band of M2 between predictions and GPS/models are detected in the Bay of Mont St-Michel. From a least squares spectral analysis of the GPS time-series, significant harmonic peaks in the integer multiples of the orbital periods of the GPS satellites are observed, indicating the existence of multipath effects in the GPS OTL constituents. The GPS OTL observations agree best with FES2004, NEA2004, GOT00.2 and CSR4.0 tide models.  相似文献   
37.
The ZoNéCo 1 and 2 cruises of Ifremer's Research Vessel L'Atalante, collected new swath bathymetry and geophysical data over the southern and northern segments of the basins and ridges forming the Loyalty system. Between the two surveyed areas, previous studies found evidence for the resistance of the Loyalty Ridge to subduction beneath the New Hebrides trench near 22°S–169°E. On the subducted plate, except for seismicity related to the downbending of the Australian plate, recorded shallow seismicity is sparse within the Loyalty system (Ridge and Basin) where reliable focal mechanism solutions are almost absent.Swath bathymetry, seismic reflection and magnetic data acquired during the ZoNéCo 1 and 2 cruises revealed a transverse asymmetric morphology in the Loyalty system, and an along-strike horst and graben structure on the discontinuous Loyalty Ridge. South of 23°50S and at 20°S, the two WSW-ENE-trending fault systems, respectively, sinistral and dextral, that crosscut the southern and northern segments of the Loyalty system, are interpreted as due to the early effects of collision with the New Hebrides Arc. A NNW-SSE trend, evident along the whole Loyalty system and on the island of New Caledonia, is interpreted as an inherited structural trend that may have been reactivated through flexure of the Australian lithospheric plate at the subduction zone.Overall then, the morphology, structure and evolution of the southern and northern segments of the Loyalty system probably result from the combined effects of the Australian plate lithospheric bulge, the active Loyalty-New Hebrides collision and the overthrust of the New Caledonian ophiolite.  相似文献   
38.
A 10‐km gridded snow water equivalent (SWE) dataset is developed over the Saint‐Maurice River basin region in southern Québec from kriging of observed snow survey data for evaluation of SWE products. The gridded SWE dataset covers 1980–2014 and is based on manual gravimetric snow surveys carried out on February 1, March 1, March 15, April 1, and April 15 of each snow season, which captures the annual maximum SWE (SWEM) with a mean interpolation error of ±19%. The dataset is used to evaluate SWEM from a range of sources including satellite retrievals, reanalyses, Canadian regional climate models, and the Canadian Meteorological Centre operational snow depth analysis. We also evaluate a number of solid precipitation datasets to determine their contribution to systematic errors in estimated SWEM. None of the evaluated datasets is able to provide estimates of SWEM that are within operational requirements of ±15% error, and insufficient solid precipitation is determined to be one of the main reasons. The Climate System Forecast Reanalysis is the only dataset where snowfall is sufficiently large to generate SWEM values comparable to observations. Inconsistencies in precipitation are also found to have a strong impact on year‐to‐year variability in SWEM dataset performance and spread. Version 3.6.1 of the Canadian Land Surface Scheme land surface scheme driven with ERA‐Interim output downscaled by Version 5.0.1 of the Canadian Regional Climate Model was the best physically based model at explaining the observed spatial and temporal variability in SWEM (root‐mean‐square error [RMSE] = 33%) and has potential for lower error with adjusted precipitation. Operational snow products relying on the real‐time snow depth observing network performed poorly due to a lack of real‐time data and the strong local scale variability of point snow depth observations. The results underscore the need for more effort to be invested in improving solid precipitation estimates for use in snow hydrology applications.  相似文献   
39.
This study seeks to determine suspended-matter flux of the Isère at Grenoble, one of the most important rivers of the northern French Alps. Since 1994, and especially 1996, systematic samplings of the left bank make it possible to follow in one point the variations of suspended particles and matter (SPM) of this river. But from a single measurement, sometimes not very representative of the whole observable concentrations within the section, it remains still difficult to estimate precisely the SPM flux. The results of this study show in particular the successive appearance of several turbidity gradients, whose occurrence is explained mainly by the hydrological and hydro-sedimentary dynamics of this river. The estimate of these gradients thus makes it possible to extrapolate specific measurements more easily and consequently to daily define the quantities of suspended matter exported by the Isère. Since 1996, the results show a very high flow, specific of the Isère at Grenoble, variable between 124 and more than 460 t km?2 yr?1. To cite this article: D. Dumas, C. R. Geoscience 336 (2004).  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号