首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1959篇
  免费   70篇
  国内免费   41篇
测绘学   58篇
大气科学   141篇
地球物理   412篇
地质学   750篇
海洋学   121篇
天文学   414篇
综合类   13篇
自然地理   161篇
  2024年   5篇
  2023年   5篇
  2022年   9篇
  2021年   44篇
  2020年   44篇
  2019年   43篇
  2018年   57篇
  2017年   50篇
  2016年   73篇
  2015年   55篇
  2014年   72篇
  2013年   105篇
  2012年   80篇
  2011年   99篇
  2010年   106篇
  2009年   144篇
  2008年   108篇
  2007年   123篇
  2006年   100篇
  2005年   80篇
  2004年   93篇
  2003年   72篇
  2002年   71篇
  2001年   62篇
  2000年   49篇
  1999年   42篇
  1998年   43篇
  1997年   17篇
  1996年   15篇
  1995年   22篇
  1994年   16篇
  1993年   4篇
  1992年   17篇
  1991年   11篇
  1989年   11篇
  1988年   4篇
  1987年   13篇
  1986年   6篇
  1985年   5篇
  1984年   8篇
  1983年   6篇
  1982年   9篇
  1981年   8篇
  1980年   6篇
  1978年   5篇
  1977年   7篇
  1975年   5篇
  1974年   6篇
  1973年   5篇
  1969年   5篇
排序方式: 共有2070条查询结果,搜索用时 15 毫秒
181.
Integration of fluid inclusion analysis with high spatial resolution Ar–Ar dating of K-feldspar cements has been used to resolve and reconstruct palaeo-fluid flow. Fluid inclusion analysis allows discrimination of distinct cement phases, thereby identifying discrete episodes of fluid flow. Ar–Ar dating of the same cements via high spatial resolution laserprobe establishes absolute age constraints on the framework previously constructed. Integration of these two datasets yields temperature–composition–time data.  相似文献   
182.
Molybdenum (Mo) isotopes have great potential as a paleoredox indicator, but this potential is currently restricted by an incomplete understanding of isotope fractionations occurring during key (bio)geochemical processes. To address one such uncertainty we have investigated the isotopic fractionation of Mo during adsorption to a range of Fe (oxyhydr)oxides, under variable Mo/Fe-mineral ratios and pH. Our data confirm that Fe (oxyhydr)oxides can readily adsorb Mo, highlighting the potential importance of this removal pathway for the global Mo cycle. Furthermore, adsorption of Mo to Fe (oxyhydr)oxides is associated with preferential uptake of the lighter Mo isotopes. Fractionations between the solid and dissolved phase (Δ98Mo) increase at higher pH, and also vary with mineralogy, increasing in the order magnetite (Δ98Mo = 0.83 ± 0.60‰) < ferrihydrite (Δ98Mo = 1.11 ± 0.15‰) < goethite (Δ98Mo = 1.40 ± 0.48‰) < hematite (Δ98Mo = 2.19 ± 0.54‰). Small differences in isotopic fractionation are also seen at varying Mo/Fe-mineral ratios for individual minerals. The observed isotopic behaviour is consistent with both fractionation during adsorption to the mineral surface (a function of vibrational energy) and adsorption of different Mo species/structures from solution. The different fractionation factors determined for different Fe (oxyhydr)oxides suggests that these minerals likely exert a major control on observed natural Mo isotope compositions during sediment deposition beneath suboxic through to anoxic (but non-sulfidic) bottom waters. Our results confirm that Mo isotopes can provide important information on the spatial extent of different paleoredox conditions, providing they are used in combination with other techniques for evaluating the local redox environment and the mineralogy of the depositing sediments.  相似文献   
183.
Gupta  Ritesh  Salager  Simon  Wang  Kun  Sun  WaiChing 《Acta Geotechnica》2019,14(4):923-937
Acta Geotechnica - This article presents a new test prototype that leverages the 3D printing technique to create artificial particle assembles to provide auxiliary evidences that supports the...  相似文献   
184.
Very intensive rainfall in August 2005 (>300 mm/3 days) triggered moderately deep (2–10 m) landslides of about 50'000 m3 volume each in two mountain torrent catchments above the village of Brienz (Berner Oberland, Switzerland). These landslides – originating in Trachtbach and Glyssibach catchments – transformed into extremely rapid (>5 m/s) debris flows, which caused significant damage in inhabited areas; two persons lost their lives and about twenty-five families became homeless. The Brienz case was the most damaging one among many landslide disasters occurring during those rainy days in the Swiss Alps. In this paper we study in detail the predisposition and causes of the 2005 landslides in the Brienz area, based on field mapping, analysis of high resolution images and digital terrain models, derived from LIDAR and infrared measurements taken before and after the event. The features of these landslides are compared with past and dormant landslides in the mid-slope portion of the mountain chain north of Brienz, which has been the source of many catastrophic mass wasting events during the last centuries. Detailed field mapping shows that highly weathered series of strongly overconsolidated Mesozoic marls (Diphyoides Limestone & Vitznau Marls of Valanginian age) and their residual soils form the primary source for the sliding materials. The rupture surfaces of the moderately deep landslides often run at the transition from saprolite to weathered bedrock, with a dip angle of about 40o in the landslide depletion area. These landslides transform into debris flows, where debris slides into strongly convergent hillslopes or directly into headwater channels.  相似文献   
185.
Detailed electron microscope and microstructural analysis of two ultrahigh temperature felsic granulites from Tonagh Island, Napier Complex, Antarctica show deformation microstructures produced at  1000 °C at 8–10 kbar. High temperature orthopyroxene (Al 7 wt.% and  11 wt.%), exhibits crystallographic preferred orientation (CPO) and frequent subgrain boundaries which point to dislocation creep as the dominating deformation mechanism within opx. Two different main slip systems are observed: in opx bands with exclusively opx grains containing subgrain boundaries with traces parallel to [010] and a strong coupling of low angle misorientations (2.5°–5°) with rotation axes parallel to [010] the dominating slip system is (100)[001]. Isolated opx grains and grain clusters of 2–5 grains embedded in a qtz–fsp matrix show an additional slip system of (010)[001]. The latter slip system is harder to activate. We suggest that differences in the activation of these slip systems is a result of higher differential stresses imposed onto the isolated opx grains and grain clusters. In contrast to opx, large qtz grains (up to 200 μm) show random crystallographic orientation. This together with their elongate and cuspate shape and the lack of systematic in the rotation axes associated with the subgrain boundaries is consistent with diffusion creep as the primary deformation mechanism in quartz.Our first time detailed microstructural observations of ultrahigh temperature and medium to high pressure granulites and their interpretation in terms of active deformation mechanisms give some insight into the type of rheology that can be expect at lower crustal conditions. If qtz is the mineral phase governing the rock rheology, Newtonian flow behaviour is expected and only low differential stress can be supported. However, if the stress supporting mineral phase is opx, the flow law resulting from dislocation creep will govern the rheology of the rock unit; hence, an exponential relationship between stress and strain rate is to be expected.  相似文献   
186.
Integrated, in situ textural, chemical and electron microprobe age analysis of monazite grains in a migmatitic metapelitic gneiss from the western Musgrave Block, central Australia has identified evidence for multiple events of growth and recrystallisation during poly-metamorphism in the Mesoproterozoic. Garnet + sillimanite-bearing metapelite underwent partial melting and segregation to palaeosome and leucosome during metamorphism between 1330 and 1296 Ma, with monazite grains in leucosome recording crystallisation at 1300 Ma. Monazite breakdown during melting is inferred to have occurred in the palaeosome. During a subsequent granulite facies event at 1200 Ma, deformation and metamorphism of leucosome and palaeosome resulted in partial disturbance of ages and potential minor growth on 1300 Ma monazite in leucosome. Growth of new, high-Y (+HREE) monazite in palaeosome domains occurred during garnet breakdown in the presence of sillimanite to cordierite and spinel, as a result of post-peak isothermal decompression. Diffusive enrichment of resorbed garnet rims in Y + HREE suggests garnet breakdown occurred slower than volume diffusion of REE. Monazite in both palaeosome and leucosome were subsequently partially to penetratively recrystallised during a retrogression event that is suggested to have occurred at 1150–1130 Ma. The intensity of recrystallisation and disturbance of ages appears linked to proximity to retrogressed garnet porphyroblasts and their occurrence in the relatively reactive or ‘fertile’ local environments provided by the palaeosome/mesosome volumes, which caused localised changes in retrogressive fluids towards compositions more aggressive to monazite. Like reaction textures, it is apparent that domainal equilibrium and reaction may control or at least strongly influence monazite REE and U–Th–Pb chemistry and hence ages.  相似文献   
187.
The solubility of KFe(CrO4)2·2H2O, a precipitate recently identified in a Cr(VI)-contaminated soil, was studied in dissolution and precipitation experiments. Ten dissolution experiments were conducted at 4–75°C and initial pH values between 0.8 and 1.2 using synthetic KFe(CrO4)2·2H2O. Four precipitation experiments were conducted at 25°C with final pH values between 0.16 and 1.39. The log KSP for the reaction
相似文献   
188.
What Happened in the Trans-North China Orogen in the Period 2560-1850 Ma?   总被引:5,自引:0,他引:5  
The Trans-North China Orogen (TNCO) was a Paleoproterozic continent-continent collisional belt along which the Eastern and Western Blocks amalgamated to form a coherent North China Craton (NCC). Recent geological, structural, geochemical and isotopic data show that the orogen was a continental margin or Japan-type arc along the western margin of the Eastern Block, which was separated from the Western Block by an old ocean, with eastward-directed subduction of the oceanic lithosphere beneath the western margin of the Eastern Block. At 2550-2520 Ma, the deep subduction caused partial melting of the medium-lower crust, producing copious granitoid magma that was intruded into the upper levels of the crust to form granitoid plutons in the low- to medium-grade granite-greeustone terranes. At 2530-2520 Ma, subduction of the oceanic lithosphere caused partial melting of the mantle wedge, which led to underplating of mafic magma in the lower crust and widespread mafic and minor felsic volcanism in the arc, forming part of the greenstone assemblages. Extension driven by widespread mafic to felsic volcanism led to the development of back-arc and/or intra-arc basins in the orogen. At 2520-2475 Ma, the subduction caused further partial melting of the lower crust to form large amounts of tonalitic-trondhjemitic-granodioritic (TTG) magmatism. At this time following further extension of back-arc basins, episodic granitoid magmatism occurred, resulting in the emplacement of 2360 Ma, -2250 Ma 2110-21760 Ma and -2050 Ma granites in the orogen. Contemporary volcano-sedimentary rocks developed in the back-arc or intra-are basins. At 2150-1920 Ma, the orogen underwent several extensional events, possibly due to subduction of an oceanic ridge, leading to emplacement of mafic dykes that were subsequently metamorphosed to amphibolites and medium- to high-pressure mafic granulites. At 1880-1820 Ma, the ocean between the Eastern and Western Blocks was completely consumed by subduction, and the dosing of the ocean led to the continent-arc-continent collision, which caused large-scale thrusting and isoclinal folds and transported some of the rocks into the lower crustal levels or upper mantle to form granulites or eclogites. Peak metamorphism was followed by exhumation/uplift, resulting in widespread development of asymmetric folds and symplectic textures in the rocks.  相似文献   
189.
The convex form of subduction-stage pressure–temperature ( P–T ) paths up to c. 2.0 GPa implies the Sambagawa high- P metamorphic belt, Japan, formed a few million years before ridge subduction. Additional compilation of P–T conditions for higher- P Sambagawa rocks ( c. 2.0–2.5 GPa) reveals that the thermal profile along the slab surface shows a remarkable high- T -ward warping at c. 2.0 GPa ( c. 65 km). Previous thermal models indicate that this warping corresponds to the onset of induced mantle flow towards the subducting slab. If a normal thickness continental crust of c. 30 km was present, this implies the hangingwall region between 30 and 65 km depth was occupied by serpentinized wedge mantle isolated from large-scale mantle flow. Subsequent arrival of the spreading ridge, reheating and dehydration of the serpentinized wedge probably supplied the water necessary for causing granitic magmatism in the Ryoke high- T metamorphic belt, which is paired with the Sambagawa belt.  相似文献   
190.
Refractory Ti-bearing minerals in the calcium-, aluminum-rich inclusion (CAI) Inti, recovered from the comet 81P/Wild 2 sample, were examined using analytical (scanning) transmission electron microscopy (STEM) methods including imaging, nanodiffraction, energy-dispersive spectroscopy (EDX) and electron energy loss spectroscopy (EELS). Inti fassaite (Ca(Mg,Ti,Al)(Si,Al)2O6) was found to have a Ti3+/Ti4+ ratio of 2.0 ± 0.2, consistent with fassaite in other solar system CAIs. The oxygen fugacity (logfO2) of formation estimated from this ratio, assuming equilibration among phases at 1509 K, is −19.4 ± 1.3. This value is near the canonical solar nebula value (−18.1 ± 0.3) and in close agreement with that reported for fassaite-bearing Allende CAIs (−19.8 ± 0.9) by other researchers using the same assumptions. Nanocrystals of osbornite (Ti(V)N), 2–40 nm in diameter, are embedded as inclusions within gehlenite, spinel and diopside in Inti. Vanadium is heterogeneously distributed within some osbornite crystals. Compositions range from pure TiN to Ti0.36V0.64N. The possible presence of oxide and carbide in solid solution with the osbornite was evaluated. The osbornite may contain O, but C is not present at detectable levels. The presence of osbornite, likely a refractory early condensate, together with the other refractory minerals in Inti, indicates that the parent comet contains solids that condensed closer to the proto-sun than the distance at which the parent comet itself accreted. The estimated oxygen fugacity and the reported isotopic and chemical compositions are consistent with Inti originating in the inner solar system like other meteoritic CAIs. These results provide insight for evaluating the validity of models of radial mass transport dynamics in the early solar system. The oxidation environments inferred for the Inti mineral assemblage are inconsistent with an X-wind formation scenario. In contrast, radial mixing models that allow accretion of components from different heliocentric distances can satisfy the observations from the cometary CAI Inti.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号