首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1959篇
  免费   70篇
  国内免费   41篇
测绘学   58篇
大气科学   141篇
地球物理   412篇
地质学   750篇
海洋学   121篇
天文学   414篇
综合类   13篇
自然地理   161篇
  2024年   5篇
  2023年   5篇
  2022年   9篇
  2021年   44篇
  2020年   44篇
  2019年   43篇
  2018年   57篇
  2017年   50篇
  2016年   73篇
  2015年   55篇
  2014年   72篇
  2013年   105篇
  2012年   80篇
  2011年   99篇
  2010年   106篇
  2009年   144篇
  2008年   108篇
  2007年   123篇
  2006年   100篇
  2005年   80篇
  2004年   93篇
  2003年   72篇
  2002年   71篇
  2001年   62篇
  2000年   49篇
  1999年   42篇
  1998年   43篇
  1997年   17篇
  1996年   15篇
  1995年   22篇
  1994年   16篇
  1993年   4篇
  1992年   17篇
  1991年   11篇
  1989年   11篇
  1988年   4篇
  1987年   13篇
  1986年   6篇
  1985年   5篇
  1984年   8篇
  1983年   6篇
  1982年   9篇
  1981年   8篇
  1980年   6篇
  1978年   5篇
  1977年   7篇
  1975年   5篇
  1974年   6篇
  1973年   5篇
  1969年   5篇
排序方式: 共有2070条查询结果,搜索用时 0 毫秒
141.
We present a detailed study of the co-diagenesis of Fe and P in hydrothermal plume fallout sediments from ∼19°S on the southern East Pacific Rise. Three distal sediment cores from 340-1130 km from the ridge crest, collected during DSDP Leg 92, were analysed for solid phase Fe and P associations using sequential chemical extraction techniques. The sediments at all sites are enriched in hydrothermal Fe (oxyhydr)oxides, but during diagenesis a large proportion of the primary ferrihydrite precipitates are transformed to the more stable mineral form of goethite and to a lesser extent to clay minerals, resulting in the release to solution of scavenged P. However, a significant proportion of this P is retained within the sediment, by incorporation into secondary goethite, by precipitation as authigenic apatite, and by readsorption to Fe (oxyhydr)oxides. Molar P/Fe ratios for these sediments are significantly lower than those measured in plume particles from more northern localities along the southern East Pacific Rise, and show a distinct downcore decrease to a depth of ∼12 m. Molar P/Fe ratios are then relatively constant to a depth of ∼35 m. The Fe and P speciation data indicate that diagenetic modification of the sediments is largely complete by a depth of 2.5 m, and thus depth trends in molar P/Fe ratios can not solely be explained by losses of P from the sediment by diffusion to the overlying water column during early diagenesis. Instead, these sediments are likely recording changes in dissolved P concentrations off the SEPR, possibly as a result of redistribution of nutrients in response to changes in oceanic circulation over the last 10 million years. Furthermore, the relatively low molar P/Fe ratios observed throughout these sediments are not necessarily solely due to losses of scavenged P by diffusion to the overlying water column during diagenesis, but may also reflect post-depositional oxidation of pyrite originating from the volatile-rich vents of the southern East Pacific Rise. This study suggests that the molar P/Fe ratio of oxic Fe-rich sediments may serve as a proxy of relative changes in paleoseawater phosphate concentrations, particularly if Fe sulfide minerals are not an important component during transport and deposition.  相似文献   
142.
The temperature dependence of the lattice parameters of pure anorthite with high Al/Si order reveals the predicted tricritical behaviour of the \(I\bar 1 \leftrightarrow P\bar 1\) phase transition at T c * =510 K. The spontaneous strain couples to the order parameter Q° as x iS xQ i 2 with S xQ 1 =4.166×10?3, S xQ 2 =0.771×10?3, S xQ 3 =?7.223×10?3 for the diagonal elements. The temperature dependence of Q° is $$Q^{\text{o}} = \left( {1 - \frac{T}{{510}}} \right)^\beta ,{\text{ }}\beta = \tfrac{{\text{1}}}{{\text{4}}}$$ A strong dependence of T c * , S xQ i and β is predicted for Al/Si disordered anorthite.  相似文献   
143.
The Corumbá Group, cropping out in the southern Paraguay Belt in Brazil, is one of the most complete Ediacaran sedimentary archives of palaeogeographic, climatic, biogeochemical and biotic evolution in southwestern Gondwana. The unit hosts a rich fossil record, including acritarchs, vendotaenids (Vendotaenia, Eoholynia), soft-bodied metazoans (Corumbella) and skeletal fossils (Cloudina, Titanotheca). The Tamengo Formation, made up mainly of limestones and marls, provides a rich bio- and chemostratigraphic record. Several outcrops, formerly assigned to the Cuiabá Group, are here included in the Tamengo Formation on the basis of lithological and chemostratigraphical criteria. High-resolution carbon isotopic analyses are reported for the Tamengo Formation, showing (from base to top): (1) a positive δ13C excursion to +4‰ PDB above post-glacial negative values, (2) a negative excursion to −3.5‰ associated with a marked regression and subsequent transgression, (3) a positive excursion to +5.5‰, and (4) a plateau characterized by δ13C around +3‰. A U-Pb SHRIMP zircon age of an ash bed interbedded in the upper part of the δ13C positive plateau yielded 543 ± 3 Ma, which is considered as the depositional age ( Babinski et al., 2008a). The positive plateau in the upper Tamengo Formation and the preceding positive excursion are ubiquitous features in several successions worldwide, including the Nama Group (Namibia), the Dengying Formation (South China) and the Nafun and Ara groups (Oman). This plateau is constrained between 542 and 551 Ma, thus consistent with the age of the upper Tamengo Formation. The negative excursion of the lower Tamengo Formation may be correlated to the Shuram–Wonoka negative anomaly, although δ13C values do not fall beyond −3.5‰ in the Brazilian sections. Sedimentary breccias occur just beneath this negative excursion in the lower Tamengo Formation. One possible interpretation of the origin of these breccias is a glacioeustatic sea-level fall, but a tectonic interpretation cannot be completely ruled out.  相似文献   
144.
Pasquier  Ulysse  He  Yi  Hooton  Simon  Goulden  Marisa  Hiscock  Kevin M. 《Natural Hazards》2019,98(3):915-937

Coastal regions are dynamic areas that often lie at the junction of different natural hazards. Extreme events such as storm surges and high precipitation are significant sources of concern for flood management. As climatic changes and sea-level rise put further pressure on these vulnerable systems, there is a need for a better understanding of the implications of compounding hazards. Recent computational advances in hydraulic modelling offer new opportunities to support decision-making and adaptation. Our research makes use of recently released features in the HEC-RAS version 5.0 software to develop an integrated 1D–2D hydrodynamic model. Using extreme value analysis with the Peaks-Over-Threshold method to define extreme scenarios, the model was applied to the eastern coast of the UK. The sensitivity of the protected wetland known as the Broads to a combination of fluvial, tidal and coastal sources of flooding was assessed, accounting for different rates of twenty-first century sea-level rise up to the year 2100. The 1D–2D approach led to a more detailed representation of inundation in coastal urban areas, while allowing for interactions with more fluvially dominated inland areas to be captured. While flooding was primarily driven by increased sea levels, combined events exacerbated flooded area by 5–40% and average depth by 10–32%, affecting different locations depending on the scenario. The results emphasise the importance of catchment-scale strategies that account for potentially interacting sources of flooding.

  相似文献   
145.
The pilot hole of the Continental Deep Borehole (KTB) drilling project is located in the Bavarian Oberpfalz at the western margin of the Bohemian Massif. The 4-km deep borehole penetrated various paragneisses and minor orthogneisses with intercalations of amphibolites and metagabbros. The different lithologies have systematically different whole-rock oxygen isotope values and give little evidence for large scale water-rock interaction. Minor fluid interaction is well documented during retrograde metamorphism by non-equilibrium fractionations between refractory minerals (quartz, garnet and hornblende) and altered minerals (chlorite/biolite and feldspar). Ubiquitous vein mineralisation indicates fluid-induced retrogression at temperatures between 150°C and 400°C. The D values of hydroxylbearing minerals are very uniform in all lithologic units. The calculated hydrogen isotope composition of the fluid in equilibrium with matrix and vein minerals increases from -45 for metabasic rocks, to -20 for gneisses, to about -5 for vein minerals. The oxygen isotope composition of the fluid has been buffered by the rock and decreases with decreasing temperature because of increasing fractionations at low temperatures and low water-rock ratios. Modern fluids sampled from open cavities within the borehole have isotopic compositions that suggest a continuous fluid evolution during retrogression in a closed system. The 13C values of calcite and graphite also indicate closed system mixing processes.  相似文献   
146.
Scapolite–wollastonite–grossular bearing calc-silicate rocks from the Vellanad area in the Kerala Khondalite Belt (KKB) of Southern India preserve a number of reaction textures which help to deduce their PT–fluid history. Textures include calcite+plagioclase±quartz symplectites after scapolite, grossular+quartz coronas between wollastonite and plagioclase, grossular coronas between wollastonite and plagioclase+calcite that replace former scapolite, and grossular blebs replacing anorthite+calcite+quartz pseudomorphs of scapolite. Garnet coronas are also observed between clinopyroxene and wollastonite or scapolite or plagioclase. The reactions, apart from those involving clinopyroxene, can be modelled in the simple CaO–Al2O3–SiO2–CO2 system and interpreted using partial reaction grids constructed for the activities of end-members in the analysed phases. The reaction topologies produced are good approximations for the peak as well as retrograde mineral assemblages and reaction textures. For the compositions of the phases present in this study, the medium pressure calc-silicate assemblages are defined by the stable pseudo-invariant points [Qtz], [Mei] and [Grs]. The textural features interpreted using these activity-corrected grids indicate a phase of isobaric cooling from about 835°C to 750°C at 6 kbar in the Vellanad area. This is inconsistent with earlier studies on other lithologies from the KKB, most of which imply a post-peak PT path involving near-isothermal decompression. However, as the temperatures obtained for the KKB from the calc-silicates are higher than those previously deduced from metapelites and garnet–orthopyroxene assemblages, the phase of near-isobaric cooling reported here is inferred to have proceeded prior to the onset of the decompression documented from studies of other rock types.  相似文献   
147.
Several gateways connected the Mediterranean with the Atlantic during the late Miocene but the timing of closure and therefore their role prior to and during the Messinian Salinity Crisis (5.97–5.33 Ma) is still under debate. The timing of closure of the Guadalhorce Corridor is especially disputed as the common lack of marine microfossils hampers precise age determination. Here we present new biostratigraphic age constraints on the sediments of the Ronda, Antequera and Arcos regions, which formed the northern part of the Guadalhorce Corridor. The general presence of Globorotalia menardii 4 in the youngest deep‐marine sediments of all three regions indicates a late Tortonian age, older than 7.51 Ma. We conclude that the Guadalhorce Corridor closed during the late Tortonian, well before the onset of the Messinian Salinity Crisis and that the late Tortonian tectonic uplift of the eastern Betics extended into the western Betics.  相似文献   
148.
149.
Atom probe microscopy (APM) is a relatively new in situ tool for measuring isotope fractions from nanoscale volumes (< 0.01 μm3). We calculate the theoretical detectable difference of an isotope ratio measurement result from APM using counting statistics of a hypothetical data set to be ± 4δ or 0.4% (2s). However, challenges associated with APM measurements (e.g., peak ranging, hydride formation and isobaric interferences), result in larger uncertainties if not properly accounted for. We evaluate these factors for Re‐Os isotope ratio measurements by comparing APM and negative thermal ionisation mass spectrometry (N‐TIMS) measurement results of pure Os, pure Re, and two synthetic Re‐Os‐bearing alloys from Schwander et al. (2015, Meteoritics and Planetary Science, 50, 893) [the original metal alloy (HSE) and alloys produced by heating HSE within silicate liquid (SYN)]. From this, we propose a current best practice for APM Re‐Os isotope ratio measurements. Using this refined approach, mean APM and N‐TIMS 187Os/189Os measurement results agree within 0.05% and 2s (pure Os), 0.6–2% and 2s (SYN) and 5–10% (HSE). The good agreement of N‐TIMS and APM 187Os/189Os measurements confirms that APM can extract robust isotope ratios. Therefore, this approach permits nanoscale isotope measurements of Os‐bearing alloys using the Re‐Os geochronometer that could not be measured by conventional measurement principles.  相似文献   
150.
Early Pleistocene vegetation in upland southeastern Australia included diverse rainforests and sclerophyll forests, which alternated on precessional timescales. The nature and timing of transitions between these biomes, and the role of fire in maintaining or driving transitions between them, are uncertain. Here we present a high‐resolution pollen record from Stony Creek Basin, a small Early Pleistocene palaeolake in southeastern Australia. The pollen record documents a pattern of vegetation change, over ca. 10 ka at ca. 1590–1600 ka, between sclerophyll forests, dominated by Eucalyptus, Callitris (Cupressaceae) or Casuarinaceae, and rainforests dominated by either angiosperms or conifers of the family Podocarpaceae. Transitions between these biomes typically occurred within ca. 1–2 ka. The associated charcoal record suggests that greatest biomass combustion occurred when local vegetation was dominated by Eucalyptus, and the least biomass combustion occurred when local vegetation was dominated by Podocarpaceae. However, local fires burnt in both sclerophyll and angiosperm‐dominated rainforest vegetation, at least once every several centuries. Fire was very rare (less than about one fire per millennium) only when the local vegetation was rainforest dominated by Podocarpaceae. This suggests that fire was an irregular presence in both sclerophyll‐ and angiosperm‐dominated rainforest biomes during the late Neogene, though was largely absent in Podocarpaceae‐dominated rainforests. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号