首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   421篇
  免费   5篇
  国内免费   3篇
测绘学   13篇
大气科学   17篇
地球物理   120篇
地质学   164篇
海洋学   23篇
天文学   45篇
综合类   3篇
自然地理   44篇
  2021年   3篇
  2020年   8篇
  2019年   5篇
  2018年   11篇
  2017年   5篇
  2016年   17篇
  2015年   8篇
  2014年   21篇
  2013年   26篇
  2012年   19篇
  2011年   23篇
  2010年   26篇
  2009年   29篇
  2008年   25篇
  2007年   22篇
  2006年   13篇
  2005年   23篇
  2004年   12篇
  2003年   18篇
  2002年   14篇
  2001年   12篇
  2000年   10篇
  1999年   7篇
  1998年   8篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   5篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   3篇
  1977年   3篇
  1976年   1篇
  1974年   7篇
  1973年   5篇
  1972年   3篇
  1971年   1篇
  1969年   1篇
排序方式: 共有429条查询结果,搜索用时 46 毫秒
331.
The heat waves of 2003 in Western Europe and 2010 in Russia, commonly labelled as rare climatic anomalies outside of previous experience, are often taken as harbingers of more frequent extremes in the global warming-influenced future. However, a recent reconstruction of spring–summer temperatures for WE resulted in the likelihood of significantly higher temperatures in 1540. In order to check the plausibility of this result we investigated the severity of the 1540 drought by putting forward the argument of the known soil desiccation-temperature feedback. Based on more than 300 first-hand documentary weather report sources originating from an area of 2 to 3 million km2, we show that Europe was affected by an unprecedented 11-month-long Megadrought. The estimated number of precipitation days and precipitation amount for Central and Western Europe in 1540 is significantly lower than the 100-year minima of the instrumental measurement period for spring, summer and autumn. This result is supported by independent documentary evidence about extremely low river flows and Europe-wide wild-, forest- and settlement fires. We found that an event of this severity cannot be simulated by state-of-the-art climate models.  相似文献   
332.
333.
Saturated hydraulic conductivity (K) is one of the most important parameters determining groundwater flow and contaminant transport in both unsaturated and saturated porous media. Although several well‐established laboratory methods exist for determining K, in situ measurements of this parameter remain very complex and scale dependent. Often, the limited accessibility of subsurface sediments for sampling means an additional impediment to our ability to quantify subsurface K heterogeneity. One potential solution is the use of outcrops as analogues for subsurface sediments. This paper investigates the use of air permeameter measurements on outcrops of unconsolidated sediments to quantify K and its spatial heterogeneity on a broad range of sediment types. The Neogene aquifer in northern Belgium is used as a case study for this purpose. To characterize the variability in K, 511 small‐scale air permeability measurements were performed on outcrop sediments representative over five of the aquifer's lithostratigraphic units. From these measurements, outcrop‐scale equivalent K tensors were calculated using numerical upscaling techniques. Validation of the air permeameter‐based K values by comparison with laboratory constant head K measurements reveals a correlation of 0.93. Overall, the results indicate that hand‐held air permeameters are very efficient and accurate tools to characterize saturated K, as well as its small‐scale variability and anisotropy on a broad range of unconsolidated sediments. The studied outcrops further provided a qualitative understanding of aquifer hydrostratigraphy and quantitative estimates about K variability at the centimetre‐scale to metre‐scale. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
334.
335.
Seismic ray tracing in layered media becomes complicated and demanding when modeling for multiple ray codes (reflection/transmission sequences) and/or dense acquisition geometries. However, we observe some redundancies in current algorithms: (a) the same layers are crossed repeatedly by similar ray segments, and (b) the effort of tracing through a layer is determined by variations in the incoming wavefront rather than the medium. We deal with these redundancies by separating the modeling process in two stages: (Stage 1) compute ray field maps representing all ray segments between each pair of adjacent interfaces, then (Stage 2) for each desired ray code assemble the complete ray field from ray segments by iterative lookup in the ray field maps.  相似文献   
336.
337.
338.
The Chassigny meteorite is a moderately shocked olivine achondrite or chassignite with features indicative of a cumulate origin with some subsolidus annealing. Chassigny is an iron-rich dunite (Fo68) with minor amounts of Ca-rich and Ca-poor pyroxene, alkalic feldspar, chromite, and melt inclusions in olivine. Accessory phases include chlorapatite, troilite, marcasite, kaersutite amphibole, pentlandite, ilmenite, rutile and baddeleyite. The meteorite experienced shock pressures of ~150–200 kbar as evidenced by planar and irregular fractures in olivine, local recrystallization in pyroxene and reduced birefringence and rare deformation lamallae in feldspar. Kaersutitic amphibole (K0.05 Na0.45)0.50 (Ca1.71 Na0.29)2.00 (Mg2.73 ‘Fe’1.19 Ti0.73 A10.23 Cr0.08 Mn0.03)4.99 (Si6.05Al1.95)8.00 O22 (OH, F)2 containing hydrogen and lesser amounts of fluorine represents the first extraterrestrial occurrence of hydrous amphibole and the first meteoritic amphibole type other than fluorichterite. Kaersutite is found only in melt inclusions.Melt inclusion bulk compositional data suggest crystallization from a low-Ca melt that may have been similar in major element abundances to the silicate portion of LL group chondrites. However, Chassigny has a fractionated pattern for REE and the lack of metallic iron, possible presence of minor Ni in the olivine and Fe3+ in the chromites indicates that Chassigny formed under relatively more oxidizing conditions than most other achondrites. Therefore its parental melt could not have been directly derived from a chondritic composition in a simple single-stage process. The iron-rich bulk composition, cumulate texture and abundance as well as alkalic nature of the interstitial feldspar indicate that Chassigny could not have generated eucritic magmas. This places further constraints on its relationship to other meteorites and the parent body from which it is derived. The Brachina meteorite is similar to Chassigny except that it is finer grained, more feldspathic and is unshocked. It extends the fractionation range of this group which now represents two unusual meteorites.  相似文献   
339.
340.
The central Chilean subduction zone between 35°S and 37°S was investigated in order to identify, document and possibly understand fluid flow and fluid venting within the forearc region. Several areas were mapped using multibeam bathymetry and backscatter, high-resolution sidescan sonar, chirp subbottom profiling and reflection seismic data. On a subsequent cruise ground-truthing observations were made using a video sled. In general, this dataset shows surprisingly little evidence of fluid venting along the mid-slope region, in contrast to other subduction zones such as Central America and New Zealand. There were abundant indications of active and predominantly fossil fluid venting along the upper slope between 36.5°S and 36.8°S at the seaward margin of an intraslope basin. Here, backscatter anomalies suggest widespread authigenic carbonate deposits, likely the result of methane-rich fluid expulsion. There is unpublished evidence that these fluids are of biogenic origin and generated within the slope sediments, similar to other accretionary margins but in contrast to the erosional margin off Central America, where fluids have geochemical signals indicating an origin from the subducting plate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号