首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   262篇
  免费   26篇
  国内免费   3篇
测绘学   4篇
大气科学   28篇
地球物理   47篇
地质学   137篇
海洋学   13篇
天文学   48篇
自然地理   14篇
  2024年   1篇
  2023年   3篇
  2022年   2篇
  2021年   4篇
  2020年   9篇
  2019年   15篇
  2018年   9篇
  2017年   6篇
  2016年   16篇
  2015年   20篇
  2014年   11篇
  2013年   14篇
  2012年   12篇
  2011年   13篇
  2010年   18篇
  2009年   21篇
  2008年   20篇
  2007年   12篇
  2006年   13篇
  2005年   8篇
  2004年   9篇
  2003年   8篇
  2002年   7篇
  2001年   4篇
  2000年   3篇
  1999年   5篇
  1998年   5篇
  1997年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1983年   2篇
  1981年   1篇
  1979年   1篇
  1978年   2篇
  1974年   1篇
  1969年   1篇
排序方式: 共有291条查询结果,搜索用时 187 毫秒
141.
142.
In the simulation‐optimization approach, a coupled optimization and groundwater flow/transport model is used to solve groundwater management problems. The efficiency of the numerical method, which is used to simulate the groundwater flow, is one the major reason to obtain the best solution for a management problem. This study was carried out to examine the advantages of the analytic element method (AEM) in the simulation‐optimization approach, for the solution of groundwater management problems. For this study, the AEM and finite difference method (FDM) based flow models were developed and coupled with the particle swarm optimization (PSO)‐based optimization model. Furthermore, the AEM‐PSO and FDM‐PSO models developed were applied in hypothetical as well as real field conditions to address groundwater management problems and the results were compared. For the real field situation, the models developed were applied to the Dore River basin in France to minimize the installation and operational cost of new pumping wells taking the location and discharge of the pumping wells as decision variables. The constraints of the problem were identified with the help of stakeholders and water authority officials. The AEM flow model was developed to facilitate the management model particularly when at each iteration, the optimization model calls for a simulation model to calculate the values of groundwater heads. The results show that, at some points, the AEM‐PSO model is efficient in identifying the optimal location of wells and consequently results in optimal costs, sometimes difficult when using the FDM. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
143.
A striking characteristic of glacial climate in the North Atlantic region is the recurrence of abrupt shifts between cold stadials and mild interstadials. These shifts have been associated with abrupt changes in Atlantic Meridional Overturning Circulation (AMOC) mode, possibly in response to glacial meltwater perturbations. However, it is poorly understood why they were more clearly expressed during Marine Isotope Stage 3 (MIS3, ~60?C27?ka BP) than during Termination 1 (T1, ~18?C10?ka BP) and especially around the Last Glacial Maximum (LGM, ~23?C19?ka BP). One clue may reside in varying climate forcings, making MIS3 and T1 generally milder than LGM. To investigate this idea, we evaluate in a climate model how ice sheet size, atmospheric greenhouse gas concentration and orbital insolation changes between 56?ka BP (=56k), 21k and 12.5k affect the glacial AMOC response to additional freshwater forcing. We have performed three ensemble simulations with the earth system model LOVECLIM using those forcings. We find that the AMOC mode in the mild glacial climate type (56k and 12.5k), with deep convection in the Labrador Sea and the Nordic Seas, is more sensitive to a constant 0.15?Sv freshwater forcing than in the cold type (21k), with deep convection mainly south of Greenland and Iceland. The initial AMOC weakening in response to freshwater forcing is larger in the mild type due to an early shutdown of Labrador Sea deep convection, which is completely absent in the 21k simulation. This causes a larger fraction of the freshwater anomaly to remain at surface in the mild type compared to the cold type. After 200?years, a weak AMOC is established in both climate types, as further freshening is compensated by an anomalous salt advection from the (sub-)tropical North Atlantic. However, the slightly fresher sea surface in the mild type facilitates further weakening of the AMOC, which occurs when a surface buoyancy threshold (?0.6?kg?m?3 surface density anomaly to the 56k reference state) is stochastically crossed in the Nordic Seas. While described details are model-specific, our results imply that a more northern location of deep convection sites during milder glacial times may have amplified frequency and amplitude of abrupt climate shifts.  相似文献   
144.
145.
Greenland ice cores offer seasonal to annual records of δ18O, a proxy for precipitation-weighted temperature, over the last few centuries to millennia. Here, we investigate the regional footprints of the North Atlantic weather regimes on Greenland isotope and climate variability, using a compilation of 22 different shallow ice-cores and the atmospheric pressure conditions from the twentieth century reanalysis (20CR). As a first step we have verified that the leading modes of winter and annual δ18O are well correlated with oceanic (Atlantic multidecadal oscillation) and atmospheric [North Atlantic oscillation (NAO)] indices respectively, and also marginally with external forcings, thus confirming earlier studies. The link between weather regimes and Greenland precipitation, precipitation-weighted temperature and δ18O is further explored by using an isotope simulation from the LMDZ-iso model, where the 3-dimensional wind fields are nudged to those of 20CR. In winter, the NAO+ and NAO? regimes in LMDZ-iso produce the largest isotopic changes over the entire Greenland region, with maximum anomalies in the South. Likewise, the Scandinavian blocking and the Atlantic ridge also show remarkable imprints on isotopic composition over the region. To assess the robustness and model dependency of our findings, a second isotope simulation from the isotopic model is also explored. The percentage of Greenland δ18O variance explained by the ensemble of weather regimes is increased by a factor near two in both LMDZ-iso and IsoGSM when compared to the contribution of the NAO index only. Similarly, weather regimes provide a net gain in the δ18O variance explained of similar magnitude for the whole set of ice core records. Greenland δ18O also appears to be locally affected by the low-frequency variations in the centres of action of the weather regimes, with clearer imprints in the LMDZ-iso simulation. This study opens the possibility for reconstructing past changes in the frequencies of occurrence of the weather regimes, which would rely on the sensitive regions identified here, and the use of additional proxies over the North Atlantic region.  相似文献   
146.
The Guarani Aquifer System (GAS) has been studied since the 1970s, a time frame that coincides with the advent of isotopic techniques in Brazil. The GAS isotope data from many studies are organized in different phases: (a) the advent of isotope techniques, (b) consolidation and new applications, (c) isotope assessments and hydrochemistry evolution, and (d) a roadmap to a new conceptual model. The reasons behind the phases, their methodological approaches, and impacts on the regional flow conceptual models are examined. Starting with local δ2H and δ18O assessments of values for water fingerprinting and estimates of recharge palaeoclimate scenarios, studies evolved to more integrated approaches based on multiple tracers. Stable isotope application techniques were consolidated during the 1980s, when new dating approaches dealing with radiogenic and heavy isotopes were introduced. Through the execution of an international transboundary project, the GAS was studied and extensively sampled for isotopes. These results have triggered wider application of isotope techniques, reflecting also world research trends. Presently, hydrochemical evolution models along flow lines from recharge to discharge areas, across large‐scale tectonic features within the entire sedimentary basin, are being combined with residence time estimates at GAS outcrop areas and deep confined units. In a complex system, it is normal that many, and even contradictory hypotheses are proposed, but isotope techniques provide a unique chance to test them. Stable isotope assessments are still needed near recharge areas, and they can be combined with groundwater classical dating procedures, complemented by newer techniques (3H‐3He, CFCs, and SF6). Recent noble gas sampling and world pioneer analytical efforts focused on the confined units in the GAS will certainly led to new findings on the overall GAS circulation. The objective of this article is to discuss how isotope information can contribute to the evolution of conceptual groundwater flow models for regional continental aquifers, such as the GAS.  相似文献   
147.
The aim of this paper is to present a three‐dimensional (3D) finite element modeling of heat and mass transfer phenomena in partially saturated open porous media with random fields of material properties. Randomness leads to transfer processes within the porous medium that naturally need a full 3D modeling for any quantitative assessment of these processes. Nevertheless, the counterpart of 3D modeling is a significant increase in computations cost. Therefore, a staggered solution strategy is adopted which permits to solve the equations sequentially. This appropriate partitioning reduces the size of the discretized problem to be solved at each time step. It is based on a specific iterative algorithm to account for the interaction between all the transfer processes. Accordingly, a suitable linearization of mass convective boundary conditions, consistent with the staggered algorithm, is also derived. After some validation tests, the 3D numerical model is used for studying the drying process of a cementitious material with regard to its intrinsic permeability randomness. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
148.
149.
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号