首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   1篇
  国内免费   2篇
测绘学   7篇
大气科学   62篇
地球物理   21篇
地质学   36篇
海洋学   3篇
天文学   21篇
自然地理   21篇
  2021年   1篇
  2019年   1篇
  2018年   4篇
  2017年   4篇
  2016年   4篇
  2015年   3篇
  2014年   17篇
  2013年   8篇
  2012年   8篇
  2011年   13篇
  2010年   9篇
  2009年   8篇
  2008年   10篇
  2007年   9篇
  2006年   6篇
  2005年   5篇
  2004年   4篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   4篇
  1999年   9篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
  1993年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有171条查询结果,搜索用时 140 毫秒
111.
While most long-term mitigation scenario studies build on a broad portfolio of mitigation technologies, there is quite some uncertainty about the availability and reduction potential of these technologies. This study explores the impacts of technology limitations on greenhouse gas emission reductions using the integrated model IMAGE. It shows that the required short-term emission reductions to achieve long-term radiative forcing targets strongly depend on assumptions on the availability and potential of mitigation technologies. Limited availability of mitigation technologies which are relatively important in the long run implies that lower short-term emission levels are required. For instance, limited bio-energy availability reduces the optimal 2020 emission level by more than 4 GtCO2eq in order to compensate the reduced availability of negative emissions from bioenergy and carbon capture and storage (BECCS) in the long run. On the other hand, reduced mitigation potential of options that are used in 2020 can also lead to a higher optimal level for 2020 emissions. The results also show the critical role of BECCS for achieving low radiative forcing targets in IMAGE. Without these technologies achieving these targets become much more expensive or even infeasible.  相似文献   
112.
In this article, we evaluate and compare results from three integrated assessment models (GCAM, IMAGE, and ReMIND/MAgPIE) regarding the drivers and impacts of bioenergy production on the global land system. The considered model frameworks employ linked energy, economy, climate and land use modules. By the help of these linkages the direct competition of bioenergy with other energy technology options for greenhouse gas (GHG) mitigation, based on economic costs and GHG emissions from bioenergy production, has been taken into account. Our results indicate that dedicated bioenergy crops and biomass residues form a potentially important and cost-effective input into the energy system. At the same time, however, the results differ strongly in terms of deployment rates, feedstock composition and land-use and greenhouse gas implications. The current paper adds to earlier work by specific looking into model differences with respect to the land-use component that could contribute to the noted differences in results, including land cover allocation, land use constraints, energy crop yields, and non-bioenergy land mitigation options modeled. In scenarios without climate change mitigation, bioenergy cropland represents 10–18 % of total cropland by 2100 across the different models, and boosts cropland expansion at the expense of carbon richer ecosystems. Therefore, associated emissions from land-use change and agricultural intensification as a result of bio-energy use range from 14 and 113 Gt CO2-eq cumulatively through 2100. Under climate policy, bioenergy cropland increases to 24–36 % of total cropland by 2100.  相似文献   
113.
Substantially postponing the emission reductions, compared to the ranges indicated in IPCC’s recent assessment for 2020 as required for meeting the longterm 2°C target, increases the risk of exceeding this target. The costs of a delay strategy are lower in the short term, but leads to higher costs in the longer term. The analysis shows if the emission reductions are postponed to 2030 it is not likely that higher emissions from the earlier years can be fully compensated in future decades in a so-called ‘delayed action scenario’. A full compensation would require emission reduction rates in the coming decades that are much higher than those found in the scenario literature. Without compensation, the risk of exceeding the global temperature rise target of 2°C will increase. This confirms that it is not only the reduction commitments for 2050 that determine the risk of exceeding the 2°C target, but also the path between now and 2050. To meet this 2°C target, more ambitious 2020 reduction targets are needed for the developed and developing countries than those that have been pledged so far.  相似文献   
114.
Abstract— A rare three‐phase symplectite consisting of Ca‐rich pyroxene, Fe‐rich olivine, and a silica phase is frequently found rimming pyroxene in the Martian meteorite Los Angeles. This assemblage is usually interpreted as the breakdown product of metastable pyroxferroite, a very rare pyroxenoid mineral itself. However, its origin is not entirely understood, mainly because the extremely small average size of the constituent phases represents a challenge for precise high‐resolution analysis. In addition to electron microbeam methods, the present study uses time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) to overcome the limits of spatial resolution and to comprehensively study this mineral assemblage. The prevailing breakdown hypothesis is supported by the following results: (1) The three symplectite phases are very homogenous in composition from 100 μm down to the micrometer scale. (2) The silica phase could be shown to be almost pure SiO2. (3) The symplectite bulk composition is consistent with pyroxferroite. Sub‐micrometer sized Ti‐oxide grains are found within the symplectite (but not within the Ca‐rich pyroxene) and probably represent a minor breakdown phase in addition to the three main phases.  相似文献   
115.
The Venus ground-based image Active Archive is an online database designed to collect ground-based images of Venus in such a way that they are optimally useful for science. The Archive was built to support ESA's Venus Amateur Observing Project, which utilizes the capabilities of advanced amateur astronomers to collect filtered images of Venus in ultraviolet, visible and near-infrared light. These images complement the observations of the Venus Express spacecraft, which cannot continuously monitor the northern hemisphere of the planet due to its elliptical orbit with apocenter above the south pole. We present the first set of observations available in the Archive and assess the useability of the data set for scientific purposes.  相似文献   
116.
117.
This paper studies the effects of mitigation and adaptation on coastal flood impacts. We focus on a scenario that stabilizes concentrations at 450 ppm-CO2-eq leading to 42 cm of global mean sea-level rise in 1995–2100 (GMSLR) and an unmitigated one leading to 63 cm of GMSLR. We also consider sensitivity scenarios reflecting increased tropical cyclone activity and a GMSLR of 126 cm. The only adaptation considered is upgrading and maintaining dikes. Under the unmitigated scenario and without adaptation, the number of people flooded reaches 168 million per year in 2100. Mitigation reduces this number by factor 1.4, adaptation by factor 461 and both options together by factor 540. The global annual flood cost (including dike upgrade cost, maintenance cost and residual damage cost) reaches US$ 210 billion per year in 2100 under the unmitigated scenario without adaptation. Mitigation reduces this number by factor 1.3, adaptation by factor 5.2 and both options together by factor 7.8. When assuming adaptation, the global annual flood cost relative to GDP falls throughout the century from about 0.06 % to 0.01–0.03 % under all scenarios including the sensitivity ones. From this perspective, adaptation to coastal flood impacts is meaningful to be widely applied irrespective of the level of mitigation. From the perspective of a some less-wealthy and small island countries, however, annual flood cost can amount to several percent of national GDP and mitigation can lower these costs significantly. We conclude that adaptation and mitigation are complimentary policies in coastal areas.  相似文献   
118.
Most deliberations on climate policy are based on a mitigation response that assumes a gradually increasing reduction over time. However, situations may occur where a more urgent response is needed. A key question for climate policy in general, but even more in the case a rapid response is needed, is: what are the characteristic response times of the response options, such as rapid mitigation or solar radiation management (SRM)? This paper explores this issue, which has not received a lot of attention yet, by looking into the role of both societal and physical response times. For mitigation, technological and economic inertia clearly limit reduction rates with considerable uncertainty corresponding to political inertia and societies’ ability to organize rapid mitigation action at what costs. The paper looks into a rapid emission reductions of 4–6 % annually. Reduction rates at the top end of this range (up to 6 %) could effectively reduce climate change, but only with a noticeable delay. Temperatures could be above those in the year of policy introduction for more than 70 years, with unknown consequences of overshoot. A strategy based on SRM is shown to have much shorter response times (up to decades), but introduces an important element of risk, such as ocean acidification and the risk of extreme temperature shifts in case action is halted. Above all, the paper highlights the role of response times in designing effective policy strategies implying that a better understanding of these crucial factors is required.  相似文献   
119.
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号