首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   0篇
  国内免费   1篇
测绘学   10篇
大气科学   7篇
地球物理   12篇
地质学   48篇
海洋学   12篇
天文学   30篇
综合类   1篇
自然地理   1篇
  2021年   2篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   2篇
  2014年   6篇
  2013年   3篇
  2011年   2篇
  2010年   2篇
  2009年   5篇
  2006年   4篇
  2005年   2篇
  2004年   4篇
  2003年   3篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1986年   6篇
  1985年   3篇
  1984年   6篇
  1983年   6篇
  1982年   4篇
  1981年   6篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有121条查询结果,搜索用时 15 毫秒
41.
A fundamental procedure is proposed for the identification of liquefaction in saturated soils based on the instability in the material's microstructure. The disturbed state concept (DSC) provides a unified constitutive model for the characterization of entire stress–strain behaviour under cyclic loading, and the values of disturbance at threshold states in the deforming microstructure provides the basis for the identification of liquefaction. The procedure is verified with respect to laboratory behaviour of two sands, saturated Ottawa and Reid Bedford. A mathematical analysis of the DSC constitutive matrix is also performed. Procedures for the application of the DSC for simplified analysis and design, and in finite element procedures are presented. It is believed that the proposed model can provide a fundamental yet simplified procedure for liquefaction analysis, and as a result, it is considered to be an improvement over the available empirical and energy-based procedures. © 1998 John Wiley & Sons, Ltd.  相似文献   
42.
43.
A hierarchical concept is proposed for the development of constitutive models to account for various factors that influence behaviour of (geologic) materials. It permits evolution of models of progressively higher grades from the basic model representing isotropic hardening with associative behaviour. Factors such as non-associativeness and induced anisotropy due to friction and cyclic loading, and softening are introduced as corrections or perturbations to the basic model. The influence of these factors is captured through non-associativeness manifested by deviation from normality of the plastic strain increments to the yield surface, F. Details of four models: isotropic hardening with associative behaviour, isotropic hardening with non-associative behavioural anisotropic hardening and strain-softening with a damage variable are presented. They are verified with respect to laboratory multiaxial test data under various paths of loading, unloading and reloading for typical soils, rock and concrete. The proposed concept is general, yet sufficiently simplified in terms of physical understanding, number of constants and their physical meanings, determination of the constants and implementation.  相似文献   
44.
The interplanetary magnetic field has been shown to influence the ring current field represented by Dst. Explorer 28 hourly magnetic field observations have been used with the hourly Dst values. The moderate geomagnetic storms of 60 and quiet-time fluctuations of 10–30 are correlated with the North to South change of the interplanetary field component perpendicular to the ecliptic. This change in the interplanetary field occurs one to three hours earlier than the corresponding change in the Dst field.  相似文献   
45.
The subtle effects of different Global Positioning System (GPS) satellite force models are becoming apparent now that mature processing strategies are reaching new levels of accuracy and precision. For this paper, we tested several approaches to solar radiation pressure (SRP) modeling that are commonly used by International GNSS Service (IGS) analysis centers. These include the GPS Solar Pressure Model (GSPM; Bar-Sever and Kuang in The Interplanetary Network Progress Report 42-160, 2005) and variants of the so-called DYB model (Springer et al. in Adv Space Res 23:673–676, 1999). Our results show that currently observed differences between GPS orbit solutions from the various IGS analysis centers are in large part explained by differences between their respective approaches to modeling SRP. DYB-based strategies typically generate orbit solutions that have the smallest differences with respect to the IGS final combined solution, largely because the DYB approach is most commonly used by the contributing analysis centers. However, various internal and external metrics, including ambiguity resolution statistics and satellite laser ranging observations, support continued use of the GSPM-based approach for precise orbit determination of the GPS constellation, at least when using the GIPSY-OASIS software.  相似文献   
46.
The restrictions imposed by the form-invariance principle on the structure of the elasto-plastic constitutive law for small strains are examined. It is shown that the yield and plastic potential functions may depend on the joint invariants of the stress and plastic strain tensors in addition to their dependence on the direct invariants of these tensors and additional scalar hardening parameters such as the plastic work; inclusion of the joint invariants as parameters in the constitutive functions allows for induced anisotropy during plastic deformation. It is demonstrated that the physical meaning of the joint invariants is related to the deviation of the principal directions of the stress tensor from those of the plastic strain tensor. It is also shown that only three cases of anisotropy (orthorhombic, transverse and isotropy) are possible in the types of material models discussed herein. The model proposed in this paper does not imply coaxiality between the principal directions of the stress and, plastic strain increment tensors; however, implications of the assumption of coaxiality on the structure of the constitutive equations is investigated. It is shown that coaxiality does not necessarily imply isotropy, but no deviations from coaxiality can be expected in isotropic materials.  相似文献   
47.
48.
Smith  C.W.  Ness  N.F.  Burlaga  L.F.  Skoug  R.M.  McComas  D.J.  Zurbuchen  T.H.  Gloeckler  G.  Haggerty  D.K.  Gold  R.E.  Desai  M.I.  Mason  G.M.  Mazur  J.E.  Dwyer  J.R.  Popecki  M.A.  Möbius  E.  Cohen  C.M.S.  Leske  R.A. 《Solar physics》2001,204(1-2):227-252
We present ACE observations for the six-day period encompassing the Bastille Day 2000 solar activity. A high level of transient activity at 1 AU, including ICME-driven shocks, magnetic clouds, shock-accelerated energetic particle populations, and solar energetic ions and electrons, are described. We present thermal ion composition signatures for ICMEs and magnetic clouds from which we derive electron temperatures at the source of the disturbances and we describe additional enhancements in some ion species that are clearly related to the transient source. We describe shock acceleration of 0.3–2.0 MeV nucl−1 protons and minor ions and the relative inability of some of the shocks to accelerate significant energetic ion populations near 1 AU. We report the characteristics of < 20 MeV nucl−1 solar energetic ions and < 0.32 MeV electrons and attempt to relate the release of energetic electrons to particular source regions.  相似文献   
49.
The effects and simulation of driving of structures (piles) into saturated soil media are discussed, and procedures for numerical simulation of driving are proposed. Consolidation caused by changes in stresses and in pore water pressures in the soil mass due to the driving is solved by using a finite element procedure. The changes in stresses and pore water pressures due to driving are obtained on the basis of the cavity expansion approach, and are introduced in the finite element procedure as initial conditions. Stresses and deformations around a pile as consolidation proceeds are plotted and related to the quantities such as a wall friction, and point and total loads relevant to analysis and design.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号