首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   590篇
  免费   23篇
  国内免费   9篇
测绘学   15篇
大气科学   29篇
地球物理   135篇
地质学   226篇
海洋学   34篇
天文学   127篇
综合类   1篇
自然地理   55篇
  2021年   11篇
  2020年   12篇
  2019年   13篇
  2018年   18篇
  2017年   9篇
  2016年   22篇
  2015年   16篇
  2014年   12篇
  2013年   36篇
  2012年   29篇
  2011年   23篇
  2010年   22篇
  2009年   29篇
  2008年   30篇
  2007年   13篇
  2006年   21篇
  2005年   18篇
  2004年   12篇
  2003年   15篇
  2002年   20篇
  2001年   12篇
  2000年   19篇
  1999年   9篇
  1998年   15篇
  1997年   10篇
  1996年   12篇
  1995年   12篇
  1994年   10篇
  1993年   13篇
  1992年   13篇
  1991年   4篇
  1990年   8篇
  1989年   6篇
  1988年   2篇
  1987年   5篇
  1986年   6篇
  1985年   13篇
  1984年   5篇
  1983年   4篇
  1982年   5篇
  1981年   6篇
  1980年   3篇
  1979年   6篇
  1978年   6篇
  1977年   5篇
  1976年   7篇
  1975年   7篇
  1973年   4篇
  1970年   2篇
  1969年   2篇
排序方式: 共有622条查询结果,搜索用时 875 毫秒
151.
152.
Motivated to help improve the robustness of predictions of sea level rise, the BRITICE-CHRONO project advanced knowledge of the former British–Irish Ice Sheet, from 31 to 15 ka, so that it can be used as a data-rich environment to improve ice sheet modelling. The project comprised over 40 palaeoglaciologists, covering expertise in terrestrial and marine geology and geomorphology, geochronometric dating and the modelling of ice sheets and oceans. A systematic and directed campaign, organised across eight transects from the continental shelf edge to a short distance (10s of kilometres) onshore, was used to collect 914 samples which yielded 639 new ages, tripling the number of dated sites constraining the timing and rates of change of the collapsing ice sheet. This special issue synthesises these findings of ice advancing to the maximum extent and its subsequent retreat for each of the eight transects to produce definitive palaeogeographic reconstructions of ice margin positions across the marine to terrestrial transition. These results are used to understand the controls that drove or modulated ice sheet retreat. A further paper reports on how ice sheet modelling experiments and empirical data can be used in combination, and another probes the glaciological meaning of ice-rafted debris.  相似文献   
153.
Understanding the pace and drivers of marine-based ice-sheet retreat relies upon the integration of numerical ice-sheet models with observations from contemporary polar ice sheets and well-constrained palaeo-glaciological reconstructions. This paper provides a reconstruction of the retreat of the last British–Irish Ice Sheet (BIIS) from the Atlantic shelf west of Ireland during and following the Last Glacial Maximum (LGM). It uses marine-geophysical data and sediment cores dated by radiocarbon, combined with terrestrial cosmogenic nuclide and optically stimulated luminescence dating of onshore ice-marginal landforms, to reconstruct the timing and rate of ice-sheet retreat from the continental shelf and across the adjoining coastline of Ireland, thus including the switch from a marine- to a terrestrially-based ice-sheet margin. Seafloor bathymetric data in the form of moraines and grounding-zone wedges on the continental shelf record an extensive ice sheet west of Ireland during the LGM which advanced to the outer shelf. This interpretation is supported by the presence of dated subglacial tills and overridden glacimarine sediments from across the Porcupine Bank, a westwards extension of the Irish continental shelf. The ice sheet was grounded on the outer shelf at ~26.8 ka cal bp with initial retreat underway by 25.9 ka cal bp. Retreat was not a continuous process but was punctuated by marginal oscillations until ~24.3 ka cal bp. The ice sheet thereafter retreated to the mid-shelf where it formed a large grounding-zone complex at ~23.7 ka cal bp. This retreat occurred in a glacimarine environment. The Aran Islands on the inner continental shelf were ice-free by ~19.5 ka bp and the ice sheet had become largely terrestrially based by 17.3 ka bp. This suggests that the Aran Islands acted to stabilize and slow overall ice-sheet retreat once the BIIS margin had reached the inner shelf. Our results constrain the timing of initial retreat of the BIIS from the outer shelf west of Ireland to the period of minimum global eustatic sea level. Initial retreat was driven, at least in part, by glacio-isostatically induced, high relative sea level. Net rates of ice-sheet retreat across the shelf were slow (62–19 m a−1) and reduced (8 m a−1) as the ice sheet vacated the inner shelf and moved onshore. A picture therefore emerges of an extensive BIIS on the Atlantic shelf west of Ireland, in which early, oscillatory retreat was followed by slow episodic retreat which decelerated further as the ice margin became terrestrially based. More broadly, this demonstrates the importance of localized controls, in particular bed topography, on modulating the retreat of marine-based sectors of ice sheets.  相似文献   
154.
Many transoceanic vessels enter the Great Lakes carrying residual ballast water and sediment that harbours live animals and diapausing eggs. In this study, we examine the potential for sodium hypochlorite (NaOCl) to reduce the risk of species introductions from diapausing invertebrate eggs in residual ballast sediment. We collected sediment from three transoceanic vessels and from Lake Erie and exposed them to NaOCl concentrations between 0 and 10,000 mg/L for 24 h. Hatching success was reduced by >89% in all four experiments at 1,000 mg/L relative to unexposed controls. Fewer species hatched at high than at low NaOCl concentrations. Based on an average residual ballast of 46.8 tonnes, the volume of NaOCl required to treat inbound vessels is 374 L. Impacts of NaOCl use could be minimized by neutralization of treated residuals with sodium bisulfite. Further research is needed, however, to evaluate the effect of NaOCl on ballast tank corrosion.  相似文献   
155.
Abstract— To investigate the nature, origin, and history of the fine‐grained matrix in Semarkona and develop techniques suitable for small samples, we have measured the induced thermoluminescence properties of six matrix samples 10 μm to 400 μm in size. The samples had TL sensitivities comparable with 4 mg of bulk samples of type 3.2–3.4 ordinary chondrites, which is very high relative to bulk Semarkona. The other induced TL properties of these samples, TL peak temperatures, and TL peak widths distinguish them from other ordinary chondrite samples where the TL is caused by feldspar. Cathodoluminescence images and other data suggest that the cause of the luminescence in the Semarkona fine‐grained matrix is forsterite. In some respects the matrix TL data resemble that of Semarkona chondrules, in which the phosphor is forsterite and terrestrial forsterites from a variety of igneous and metamorphic environments. However, differences in the TL peak temperature versus TL peak width relationship between the matrix samples and the other forsterites suggest a fundamentally different formation mechanism. We also note that forsterite appears to be a major component in many primitive materials, such as nebulae, cometary dust, and Stardust particles.  相似文献   
156.
The Pirin Mountains in southwest Bulgaria spatially mark a transition between the Mediterranean and temperate climate zones. Therefore they are also particularly relevant for research on high mountain climate and the effect of landscape transformation. Historical climate records gathered in the area have been researched, checked and statistically examined. The mountainous climate has been characterised and trends in the evolution of temperature and precipitation since 1931 have been outlined. There are objective evidences for an increasing annual mean temperature, longer vegetative periods and local droughts in spring and autumn. Significant changes also appear in climatic threshold values such as the number of frost change days. This last parameter is very important for the sustainability of mountainous ecosystems.  相似文献   
157.
Twenty-six months of continuous ceilometer data are used to estimate the convective mixed-layer height for 710 days by identifying backscatter gradients associated with the entrainment zone. To accomplish this, a semi-automatic procedure is developed that removes all non-applicable data before applying a mixed-layer height algorithm to the backscatter profiles. Two different algorithms for estimating the mixed-layer height are assessed: the minimum-gradient method and the ideal-profile method. The latter of these two algorithms is found to be more robust. Comparisons of mixed-layer height values estimated from the ceilometer agree with previous observations with slightly higher estimates in the mornings and evenings. For clear days with no cumulus cloud formation, the seasonal cycle in mixed-layer heights peaks in late June to early July. Daily maximum values are suppressed by the site’s coastal location, remaining below 800 m for all but a few days. The mean daily maximum mixed-layer height increases by 384 m for days with boundary-layer clouds. The mean summer diurnal trend is found not to differ greatly from that in spring on clear days, while days with boundary-layer clouds have higher spring values than in summer. Net surface heat flux and synoptic stability likely have the largest influence on the mixed-layer heights. Additionally, large intra-monthly variability suggests a strong influence from regional dynamics.  相似文献   
158.
Numerical simulations of asteroid breakups, including both the fragmentation of the parent body and the gravitational interactions between the fragments, have allowed us to reproduce successfully the main properties of asteroid families formed in different regimes of impact energy, starting from a non-porous parent body. In this paper, using the same approach, we concentrate on a single regime of impact energy, the so-called catastrophic threshold usually designated by , which results in the escape of half of the target’s mass. Thanks to our recent implementation of a model of fragmentation of porous materials, we can characterize for both porous and non-porous targets with a wide range of diameters. We can then analyze the potential influence of porosity on the value of , and by computing the gravitational phase of the collision in the gravity regime, we can characterize the collisional outcome in terms of the fragment size and ejection speed distributions, which are the main outcome properties used by collisional models to study the evolutions of the different populations of small bodies. We also check the dependency of on the impact speed of the projectile.In the strength regime, which corresponds to target sizes below a few hundreds of meters, we find that porous targets are more difficult to disrupt than non-porous ones. In the gravity regime, the outcome is controlled purely by gravity and porosity in the case of porous targets. In the case of non-porous targets, the outcome also depends on strength. Indeed, decreasing the strength of non-porous targets make them easier to disrupt in this regime, while increasing the strength of porous targets has much less influence on the value of . Therefore, one cannot say that non-porous targets are systematically easier or more difficult to disrupt than porous ones, as the outcome highly depends on the assumed strength values. In the gravity regime, we also confirm that the process of gravitational reaccumulation is at the origin of the largest remnant’s mass in both cases. We then propose some power-law relationships between and both target’s size and impact speed that can be used in collisional evolution models. The resulting fragment size distributions can also be reasonably fitted by a power-law whose exponent ranges between −2.2 and −2.7 for all target diameters in both cases and independently on the impact velocity (at least in the small range investigated between 3 and 5 km/s). Then, although ejection velocities in the gravity regime tend to be higher from porous targets, they remain on the same order as the ones from non-porous targets.  相似文献   
159.
Abstract– To understand the nature of C asteroid surfaces, which are often related to phyllosilicates and C chondrites, we report near‐infrared spectra for a suite of phyllosilicates, heated to 100–1100 °C in 100 °C intervals, and compare the results for telescope IRTF spectra for 11 C asteroids. As C asteroids have relatively featureless spectra, we focus on “continuum plots” (1.0–1.75 μm slope against 1.8–2.5 μm slope). We compare the continuum plots of the 11 C asteroids and our heated phyllosilicates with literature data for C chondrites. The CI, CR, CK, and CV chondrite meteorites plot in the C asteroid field, whereas CM chondrites plot in a close but discrete field. All are well separated from the large phyllosilicate field. Heating kaolinite and montmorillonite to ≥700 °C moves their continua slopes into the C asteroid field, whereas chlorite and serpentine slopes move into the CM chondrite field. Water losses during heating are generally 10–15 wt% and were associated with a 20–70% albedo drop. Our data are consistent with surfaces of the C asteroids consisting of the dehydration products of montmorillonite whereas the CM chondrites are the dehydration products of serpentine and chlorite. The presence of opaque minerals and evaporites does not provide quantitative explanations for the difference in continua slopes of the phyllosilicates and C asteroids. The CM chondrites can also be linked to the C asteroids by heating. We suggest that the CM chondrites are interior samples, and the presence of a 3 μm feature in C asteroid spectra also indicates the excavation of material.  相似文献   
160.
The design of stormwater infrastructure is based on an underlying assumption that the probability distribution of precipitation extremes is statistically stationary. This assumption is called into question by climate change, resulting in uncertainty about the future performance of systems constructed under this paradigm. We therefore examined both historical precipitation records and simulations of future rainfall to evaluate past and prospective changes in the probability distributions of precipitation extremes across Washington State. Our historical analyses were based on hourly precipitation records for the time period 1949–2007 from weather stations in and near the state’s three major metropolitan areas: the Puget Sound region, Vancouver (WA), and Spokane. Changes in future precipitation were evaluated using two runs of the Weather Research and Forecast (WRF) regional climate model (RCM) for the time periods 1970–2000 and 2020–2050, dynamically downscaled from the ECHAM5 and CCSM3 global climate models. Bias-corrected and statistically downscaled hourly precipitation sequences were then used as input to the HSPF hydrologic model to simulate streamflow in two urban watersheds in central Puget Sound. Few statistically significant changes were observed in the historical records, with the possible exception of the Puget Sound region. Although RCM simulations generally predict increases in extreme rainfall magnitudes, the range of these projections is too large at present to provide a basis for engineering design, and can only be narrowed through consideration of a larger sample of simulated climate data. Nonetheless, the evidence suggests that drainage infrastructure designed using mid-20th century rainfall records may be subject to a future rainfall regime that differs from current design standards.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号