首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   623篇
  免费   26篇
测绘学   28篇
大气科学   67篇
地球物理   138篇
地质学   180篇
海洋学   56篇
天文学   106篇
综合类   2篇
自然地理   72篇
  2022年   3篇
  2021年   6篇
  2020年   7篇
  2019年   4篇
  2018年   12篇
  2017年   12篇
  2016年   25篇
  2015年   8篇
  2014年   17篇
  2013年   31篇
  2012年   26篇
  2011年   24篇
  2010年   28篇
  2009年   25篇
  2008年   23篇
  2007年   19篇
  2006年   19篇
  2005年   21篇
  2004年   12篇
  2003年   16篇
  2002年   22篇
  2001年   14篇
  2000年   20篇
  1999年   12篇
  1998年   9篇
  1997年   11篇
  1996年   11篇
  1995年   10篇
  1994年   8篇
  1993年   11篇
  1992年   8篇
  1991年   5篇
  1990年   5篇
  1989年   5篇
  1988年   9篇
  1987年   9篇
  1986年   8篇
  1985年   13篇
  1984年   10篇
  1983年   13篇
  1982年   13篇
  1981年   12篇
  1980年   16篇
  1979年   6篇
  1978年   10篇
  1977年   10篇
  1976年   7篇
  1975年   7篇
  1973年   4篇
  1961年   2篇
排序方式: 共有649条查询结果,搜索用时 897 毫秒
291.
292.
Multiple energetic injections in a strong spike-like solar burst   总被引:1,自引:0,他引:1  
An intense and fast spike-like solar burst was observed with high sensitivity in microwaves and hard X-rays, on December 18,1980, at 19h21m20s UT. It is shown that the burst was built up of short time scale structures superimposed on an underlying gradual emission, the time evolution of which showed remarkable proportionality between hard X-ray and microwave fluxes. The finer time structures were best defined at mm-microwaves. At the peak of the event the finer structures repeat every 30–60 ms (displaying an equivalent repetition rate of 16–20 s-1). The more slowly varying component with a time scale of about 1 s was identified in microwaves and hard X-rays throughout the burst duration. Similarly to what has been found for mm-microwave burst emission, we suggest that X-ray fluxes might also be proportional to the repetition rate of basic units of energy injection (quasi-quantized). We estimate that one such injection produces a pulse of hard X-ray photons with about 4 × 1021 erg, for 25 keV. We use this figure to estimate the relevant parameters of one primary energy release site both in the case where hard X-rays are produced primarily by thick-target bremsstrahlung, and when they are purely thermal, and also discuss the relation of this figure to global energy considerations. We find, in particular, that a thick-target interpretation only becomes possible if individual pulses have durations larger than 0.2 s.  相似文献   
293.
Extensive data from the Solar Maximum Mission (SMM) and ground-based observatories are presented for two flares; the first occurred at 12:48 UT on 31 August, 1980 and the second just 3 min later. They were both compact events located in the same part of the active region. The first flare appeared as a typical X-ray flare: the Caxix X-ray lines were broadened ( 190±40 km s-1) and blue shifted ( 60±20 km s-1) during the impulsive phase, and there was a delay of about 30 s between the hard and soft X-ray maxima. The relative brightness of the two flares was different depending on the spectral region being used to observe them, the first being the brighter at microwave and hard X-ray wavelengths but fainter in soft X-rays. The second flare showed no significant mass motions, and the impulsive and gradual phases were almost simultaneous. The physical characteristics of the two flares are derived and compared. The main difference between them was in the pre-flare state of the coronal plasma at the flare site: before the first flare it was relatively cool (3 × 106 K) and tenuous (4 × 109 cm-3), but owing to the residual effects of the first flare the coronal plasma was hotter (5 × 106 K) and more dense (3 × 1011 cm-3) at the onset of the second flare. We are led to believe from these data that the plasma filling the flaring loops absorbed most of the energy released during the impulsive phase of the second flare, so that only a fraction of the energy could reach the chromosphere to produce mass motions and turbulence.A simple study of the brightest flares observed by the SMM shows that at least 43% of them are multiple. Thus, the situation studied here may be quite common, and the difference in initial plasma conditions could explain at least some of the large variations in observed flare parameters. We draw a number of conclusions from this study. First, the evolution of the second flare is substantially affected by the presence of the first flare. Secondly, the primary energy release in the second event is in the corona. Thirdly, the flares occur in a decaying magnetic region, probably as a result of the interaction of existing sheared loops; there is no evidence of emerging magnetic flux. Also, magnetic structures of greatly varying size participate in the flare processes. Lastly, there is some indication that the loops are not symmetrical or stable throughout the flares, i.e. the magnetic field does not act as a uniform passive bottle for the plasma, as is often assumed in flare models.NOAA/Space Environment Laboratory, currently at NASA/MSFC, Ala., U.S.A.Now at Sacramento Peak Observatory, Tucson, Ariz., U.S.A.  相似文献   
294.
295.
Groundwater in shallow unconsolidated sedimentary aquifers close to the Bornheim fault in the Lower Rhine Embayment (LRE), Germany, has relatively low δ2H and δ18O values in comparison to regional modern groundwater recharge, and 4He concentrations up to 1.7?×?10?4 cm3 (STP) g–1?±?2.2 % which is approximately four orders of magnitude higher than expected due to solubility equilibrium with the atmosphere. Groundwater age dating based on estimated in situ production and terrigenic flux of helium provides a groundwater residence time of ~107 years. Although fluid exchange between the deep basal aquifer system and the upper aquifer layers is generally impeded by confining clay layers and lignite, this study’s geochemical data suggest, for the first time, that deep circulating fluids penetrate shallow aquifers in the locality of fault zones, implying  that sub-vertical fluid flow occurs along faults in the LRE. However, large hydraulic-head gradients observed across many faults suggest that they act as barriers to lateral groundwater flow. Therefore, the geochemical data reported here also substantiate a conduit-barrier model of fault-zone hydrogeology in unconsolidated sedimentary deposits, as well as corroborating the concept that faults in unconsolidated aquifer systems can act as loci for hydraulic connectivity between deep and shallow aquifers. The implications of fluid flow along faults in sedimentary basins worldwide are far reaching and of particular concern for carbon capture and storage (CCS) programmes, impacts of deep shale gas recovery for shallow groundwater aquifers, and nuclear waste storage sites where fault zones could act as potential leakage pathways for hazardous fluids.  相似文献   
296.
Small mass‐dependent variations of molybdenum isotope ratios in oceanic and island arc rocks are expected as a result of recycling altered oceanic crust and sediments into the mantle at convergent plate margins over geological timescales. However, the determination of molybdenum isotope data precise and accurate enough to identify these subtle isotopic differences remains challenging. Large sample sizes – in excess of 200 mg – need to be chemically processed to isolate enough molybdenum in order to allow sufficiently high‐precision isotope analyses using double‐spike MC‐ICP‐MS techniques. Established methods are either unable to process such large amounts of silicate material or require several distinct chemical processing steps, making the analyses very time‐consuming. Here, we present a new and efficient single‐pass chromatographic exchange technique for the chemical isolation of molybdenum from silicate and metal matrices. To test our new method, we analysed USGS reference materials BHVO‐2 and BIR‐1. Our new data are consistent with those derived from more involved and time‐consuming methods for these two reference materials previously published. We also provide the first molybdenum isotope data for USGS reference materials AGV‐2, the GSJ reference material JB‐2 as well as metal NIST SRM 361.  相似文献   
297.
We investigated how projected changes in land cover and climate affected simulated nitrate (NO3?) and organic nitrogen discharge for two watersheds within the Neuse River Basin, North Carolina, USA, for years 2010–2070. We applied the Soil and Water Assessment Tool watershed model to predict nitrogen discharge using (1) atmospheric carbon dioxide (CO2) concentrations predicted by the Intergovernmental Panel on Climate Change, (2) land cover change predicted by the Integrated Climate and Land Use Change project and (3) precipitation and temperature simulated by two statistically downscaled and bias‐corrected Global Circulation Models. We determined the sensitivity of simulated nitrogen discharge to separate changes in each treatment [(1) CO2, (2) land cover and (3) precipitation and temperature (PT)] by comparing each treatment to a reference condition. Results showed that nitrogen discharges were most sensitive to changes in PT over the 60‐year simulation. Nitrogen discharges had similar sensitivities to the CO2 and land cover treatments, which were only one‐tenth the influence of the PT treatment. Under the CO2 treatment, nitrogen discharges increased with increasing ambient CO2. NO3? discharge decreased with increased urbanization; however, organic nitrogen had a varied response. Under the PT treatment, there was high spatial variability in nitrogen discharges. In a single year, certain sub‐basins showed an 80% increase in nitrogen discharge relative to reference, while others showed a 400% decrease. With nitrogen discharge showing high sensitivity to PT change, we suggest that more emphasis should be placed on investigating impacts of PT on nutrient transport in the Neuse River Basin. Published 2015. This article is a U.S. Government work and is in the public domain in the USA  相似文献   
298.
Bank erosion is the main source of suspended sediment (SS) and diffuse total phosphorus (TP) in many lowland catchments. This study compared a physically based sediment routing method (Physical method), which distinguishes between stream bed and bank erosion, with the original sediment routing method (Original method) within the Soil and Water Assessment Tool (SWAT) version 2009, for simulating SS and TP losses from a lowland catchment. A SWAT model was set up for the lowland River Odense catchment in Denmark and calibrated against observed stream flow and phosphate (PO4) loads. On the basis of an initial calibration of hydrological and PO4 parameters, the SWAT model with the Original method (Original model) and the SWAT model with the Physical method (Physical model) were calibrated separately against observed SS and TP loads. The SWAT model simulated daily stream flow well but underestimated PO4 loads. The Physical model simulated daily SS and TP better than the Original model. The simulated contribution of bank erosion to SS in the Physical model (99%) was close to the estimated contribution from in situ erosion measurements (90–94%). Compared with the Original method, the Physical method is not only more conceptually correct but also improves model performance. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
299.
ABSTRACT

Weather generators rely on historical meteorological records to simulate time series of synthetic weather sequences, the quality of which has direct influence on model applications. The climate generator CLIGEN’s database has recently been updated to comprise consistent historical records from 1974 to 2013 (updated CLIGEN database, UCD) compared to the current database in which records are of different lengths. In this study, CLIGEN’s performance in estimating precipitation using UCD (eight stations) and the subsequent impact on urban runoff simulations (371 stations) were evaluated in the Great Lakes Region, USA. Generally, UCD-based precipitation could replicate observed daily precipitation up to the 99.5th percentile, but maximum precipitation was underestimated. Results from the Long-Term Hydrologic Impact Assessment model using UCD-based precipitation showed about 0.57 billion cubic meters more (14.9%) average annual runoff being simulated compared with simulations based on the current CLIGEN database. Overall, CLIGEN with the updated database was found suitable for providing precipitation estimates and for use with modeling urban runoff or urbanization effects.  相似文献   
300.
The distributed hydrology–soil–vegetation model (DHSVM) was used to study the potential impacts of projected future land cover and climate change on the hydrology of the Puget Sound basin, Washington, in the mid‐twenty‐first century. A 60‐year climate model output, archived for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), was statistically downscaled and used as input to DHSVM. From the DHSVM output, we extracted multi‐decadal averages of seasonal streamflow, annual maximum flow, snow water equivalent (SWE), and evapotranspiration centred around 2030 and 2050. Future land cover was represented by a 2027 projection, which was extended to 2050, and DHSVM was run (with current climate) for these future land cover projections. In general, the climate change signal alone on sub‐basin streamflow was evidenced primarily through changes in the timing of winter and spring runoff, and slight increases in the annual runoff. Runoff changes in the uplands were attributable both to climate (increased winter precipitation, less snow) and land cover change (mostly reduced vegetation maturity). The most climatically sensitive parts of the uplands were in areas where the current winter precipitation is in the rain–snow transition zone. Changes in land cover were generally more important than climate change in the lowlands, where a substantial change to more urbanized land use and increased runoff was predicted. Both the annual total and seasonal distribution of freshwater flux to Puget Sound are more sensitive to climate change impacts than to land cover change, primarily because most of the runoff originates in the uplands. Both climate and land cover change slightly increase the annual freshwater flux to Puget Sound. Changes in the seasonal distribution of freshwater flux are mostly related to climate change, and consist of double‐digit increases in winter flows and decreases in summer and fall flows. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号