首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   623篇
  免费   26篇
测绘学   28篇
大气科学   67篇
地球物理   138篇
地质学   180篇
海洋学   56篇
天文学   106篇
综合类   2篇
自然地理   72篇
  2022年   3篇
  2021年   6篇
  2020年   7篇
  2019年   4篇
  2018年   12篇
  2017年   12篇
  2016年   25篇
  2015年   8篇
  2014年   17篇
  2013年   31篇
  2012年   26篇
  2011年   24篇
  2010年   28篇
  2009年   25篇
  2008年   23篇
  2007年   19篇
  2006年   19篇
  2005年   21篇
  2004年   12篇
  2003年   16篇
  2002年   22篇
  2001年   14篇
  2000年   20篇
  1999年   12篇
  1998年   9篇
  1997年   11篇
  1996年   11篇
  1995年   10篇
  1994年   8篇
  1993年   11篇
  1992年   8篇
  1991年   5篇
  1990年   5篇
  1989年   5篇
  1988年   9篇
  1987年   9篇
  1986年   8篇
  1985年   13篇
  1984年   10篇
  1983年   13篇
  1982年   13篇
  1981年   12篇
  1980年   16篇
  1979年   6篇
  1978年   10篇
  1977年   10篇
  1976年   7篇
  1975年   7篇
  1973年   4篇
  1961年   2篇
排序方式: 共有649条查询结果,搜索用时 734 毫秒
161.
162.
The design of stormwater infrastructure is based on an underlying assumption that the probability distribution of precipitation extremes is statistically stationary. This assumption is called into question by climate change, resulting in uncertainty about the future performance of systems constructed under this paradigm. We therefore examined both historical precipitation records and simulations of future rainfall to evaluate past and prospective changes in the probability distributions of precipitation extremes across Washington State. Our historical analyses were based on hourly precipitation records for the time period 1949–2007 from weather stations in and near the state’s three major metropolitan areas: the Puget Sound region, Vancouver (WA), and Spokane. Changes in future precipitation were evaluated using two runs of the Weather Research and Forecast (WRF) regional climate model (RCM) for the time periods 1970–2000 and 2020–2050, dynamically downscaled from the ECHAM5 and CCSM3 global climate models. Bias-corrected and statistically downscaled hourly precipitation sequences were then used as input to the HSPF hydrologic model to simulate streamflow in two urban watersheds in central Puget Sound. Few statistically significant changes were observed in the historical records, with the possible exception of the Puget Sound region. Although RCM simulations generally predict increases in extreme rainfall magnitudes, the range of these projections is too large at present to provide a basis for engineering design, and can only be narrowed through consideration of a larger sample of simulated climate data. Nonetheless, the evidence suggests that drainage infrastructure designed using mid-20th century rainfall records may be subject to a future rainfall regime that differs from current design standards.  相似文献   
163.
Climate change in the twenty-first century will strongly affect the processes that define natural and human systems. The Washington Climate Change Impacts Assessment (WACCIA) was intended to identify the nature and effects of climate change on natural and human resources in Washington State over the next century. The assessment focused on eight sectors that were identified as being potentially most climate sensitive: agriculture, energy, salmon, urban stormwater infrastructure, forests, human health, coasts, and water resources. Most of these sectors are sensitive in one way or another to water availability. While water is generally abundant in the state under current climate conditions, its availability is highly variable in space and time, and these variations are expected to change as the climate warms. Here we summarize the results of the WACCIA and identify uncertainties and common mechanisms that relate many of the impacts. We also address cross-sectoral sensitivities, vulnerabilities, and adaptation strategies.  相似文献   
164.
Five vertical profiles of silver (Ag) in the subarctic northeast Pacific are presented. Dissolved (< 0.2 μm) Ag concentrations within the surface mixed layer range from 6–25 pM, with the highest observed values at the most coastal site. Elevated Ag concentrations at this station are most likely attributable to the estuarine circulation in the Juan de Fuca Strait. One open-ocean station (P20) exhibited a strong surface Ag maximum. The station was located at the edge of a Haida eddy which raises the possibility that such eddies transport Ag seaward from the coastal zone. Ag concentrations in the deep waters ranged from 60–80 pM. These measurements are consistent with other recent Ag data collected in the Pacific. Ag profiles throughout the Pacific Ocean yield a strong positive correlation between Ag concentration and dissolved silicic acid concentration. However, Ag is depleted relative to silicic acid at intermediate depths where dissolved O2 concentrations are low, implying a possible removal of Ag from oxygen-depleted waters by scavenging and/or precipitation.  相似文献   
165.
Unusual circumstances may require that a longwall retreat into or through a previously driven room. The operation can be completed successfully, but there have been a number of spectacular failures. To help determine what factors contribute to such failures, a comprehensive international database of 131 case histories has been compiled. The cases include six failures where major rock falls occurred in front of the shields, and seven even more serious failures involving major overburden weighting. The case studies suggest two types of room failure mechanism. The first is a roof fall type failure caused by loading of the immediate roof at the face as the fender or remnant longwall panel narrows. The second is an overburden weighting type failure caused by the inability of the roof to bridge the recovery room and face area, and affecting rock well above the immediate roof. The data indicate that the roof fall type of failure is less likely when intensive roof reinforcement (bolts, cables and trusses) is employed together with higher-capacity shields. The overburden weighting failures, in contrast, occurred when the roof was weak and little standing support was used. Weighting failures were not greatly affected by the density of roof reinforcement. In one of the overburden weighting cases, in a Pittsburgh coalbed mine, stress cell, convergence, bolt load and extensometer data have been used to analyze the failure in detail.  相似文献   
166.
Water-quality conditions in surficial unconsolidated aquifers were assessed in five agricultural regions in the United States. The assessment covers the Delmarva Peninsula, and parts of Long Island, Connecticut, Kansas, and Nebraska, and is based on water-quality and ancillary data collected during the 1980s. Concentrations of nitrate in ground water in these areas have increased because of applications of commercial fertilizers and manure. Nitrate concentrations exceed the maximum contaminant level (MCL) for drinking water of 10 milligrams per liter as nitrogen established by the U.S. Environmental Protection Agency in 12 to 46 percent of the wells sampled in the agricultural regions. Concentrations of nitrate are elevated within the upper 100 to 200 feet of the surficial aquifers. Permeable and sandy deposits that generally underlie the agricultural areas provide favorable conditions for vertical leaching of nitrate to relatively deep parts of the aquifers. The persistence of nitrate at such depths is attributed to aerobic conditions along ground-water-flow paths. Concentrations of nitrate are greatest in areas that are heavily irrigated or areas that are underlain by well-drained sediments; more fertilizer is typically applied on land with well-drained sediments than on poorly drained sediments because well-drained sediments have a low organic-matter content and low moisture capacity. Concentrations of other inorganic constituents related to agriculture, such as potassium and chloride from potash fertilizers, and calcium and magnesium from liming, also are significantly elevated in ground water beneath the agricultural areas. These constituents together impart a distinctive agricultural-chemical trademark to the ground water, different from natural water.  相似文献   
167.
168.
The Vandfaldsdalen macrodike, which lies in the Skaergaard region of East Greenland, is a remarkably zoned fossil magma chamber, with a granophyric cap overlying cumulate gabboros. The intrusion is distinctly bimodal, with a large compositional discontinuity at the contact between the gabbro and granophyre. Although the exposed part of the macrodike is in contact with Tertiary basalts and sediments, the granophyre originated by assimilation of xenoliths derived from the underlying Archean basement. Sr and Nd isotopic ratios throughout the cumulate sequence are remarkably similar, indicating insignificant contamination of the gabbro by the granophyre. Modelling of the compositional effects of cooling and crystallization indicate that the cumulate pile resulted from fractional crystallization, with the complicating effects of trapped liquid and post-cumulus fractionation. The uppermost rocks in the mafic part, of the chamber (SiO2=62%; FeO*=12.4%) resulted from about 85% fractional crystallization. A transgressive sill of strongly fractionated magma (SiO2=67%; FeO*=8.8%) formed from extracted intercumulus liquid that was the result of 90% fractional crystallization of the original magma. Mass-balance indicates that typical granophyre is made up of about 75% dissolved xenoliths, by weight, and 25% mantle-derived basaltic magma. The magmas were not measurably affected by material exchange across the interface between the gabbro and granophyre. This magma chamber evolved by both assimilation and fractional crystallization, but the residual liquids formed by fractional crystallization were unaffected by assimilation. Heat exchange between were unaffected by assimilation. Heat exchange between the two parts of the chamber was obviously important, but there was insignificant material exchange. The inability of fractional crystallization and assimilation to affect the same liquid is related to the dynamic behavior of this particular magma chamber, particularly the buoyancy of granophyre relative to evolving tholeiitic magma.  相似文献   
169.
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号