全文获取类型
收费全文 | 615篇 |
免费 | 17篇 |
专业分类
测绘学 | 28篇 |
大气科学 | 67篇 |
地球物理 | 139篇 |
地质学 | 178篇 |
海洋学 | 55篇 |
天文学 | 91篇 |
综合类 | 2篇 |
自然地理 | 72篇 |
出版年
2021年 | 6篇 |
2020年 | 7篇 |
2019年 | 4篇 |
2018年 | 12篇 |
2017年 | 12篇 |
2016年 | 23篇 |
2015年 | 8篇 |
2014年 | 17篇 |
2013年 | 31篇 |
2012年 | 27篇 |
2011年 | 24篇 |
2010年 | 27篇 |
2009年 | 25篇 |
2008年 | 23篇 |
2007年 | 19篇 |
2006年 | 19篇 |
2005年 | 18篇 |
2004年 | 12篇 |
2003年 | 14篇 |
2002年 | 19篇 |
2001年 | 13篇 |
2000年 | 19篇 |
1999年 | 11篇 |
1998年 | 7篇 |
1997年 | 11篇 |
1996年 | 11篇 |
1995年 | 10篇 |
1994年 | 8篇 |
1993年 | 11篇 |
1992年 | 8篇 |
1991年 | 5篇 |
1990年 | 5篇 |
1989年 | 5篇 |
1988年 | 9篇 |
1987年 | 9篇 |
1986年 | 8篇 |
1985年 | 13篇 |
1984年 | 10篇 |
1983年 | 13篇 |
1982年 | 13篇 |
1981年 | 11篇 |
1980年 | 16篇 |
1979年 | 6篇 |
1978年 | 10篇 |
1977年 | 10篇 |
1976年 | 7篇 |
1975年 | 7篇 |
1973年 | 4篇 |
1969年 | 2篇 |
1961年 | 2篇 |
排序方式: 共有632条查询结果,搜索用时 15 毫秒
11.
Samuel Ebert Addi Bischoff Dennis Harries Sarah Lentfort Jean‐Alix Barrat Andreas Pack Jrme Gattacceca Robbin Visser Peter Schmid‐Beurmann Stephan Kimpel 《Meteoritics & planetary science》2019,54(2):328-356
Based on the high abundance of fine‐grained material and its dark appearance, NWA 11024 was recognized as a CM chondrite, which is also confirmed by oxygen isotope measurements. But contrary to known CM chondrites, the typical phases indicating aqueous alteration (e.g., phyllosilicates, carbonates) are missing. Using multiple analytical techniques, this study reveals the differences and similarities to known CM chondrites and will discuss the possibility that NWA 11024 is the first type 3 CM chondrite. During the investigation, two texturally apparent tochilinite–cronstedtite intergrowths were identified within two thin sections. However, the former phyllosilicates were recrystallized to Fe‐rich olivine during a heating event without changing the textural appearance. A peak temperature of 400–600 °C is estimated, which is not high enough to destroy or recrystallize calcite grains. Thus, calcites were never constituents of the mineral paragenesis. Another remarkable feature of NWA 11024 is the occurrence of unknown clot‐like inclusions (UCLIs) within fine‐grained rims, which are unique in this clarity. Their density and S concentration are significantly higher than of the surrounding fine‐grained rim and UCLIs can be seen as primary objects that were not formed by secondary alteration processes inside the rims. Similarities to chondritic and cometary interplanetary dust particles suggest an ice‐rich first‐generation planetesimal for their origin. In the earliest evolution, NWA 11024 experienced the lowest degree of aqueous alteration of all known CM chondrites and subsequently, a heating event dehydrated the sample. We suggest to classify the meteorite NWA 11024 as the first type 3 CM chondrite similar to the classification of CV3 chondrites (like Allende) that could also have lost their matrix phyllosilicates by thermal dehydration. 相似文献
12.
Laboratory experiments show that dusty bodies in a gaseous environment eject dust particles if they are illuminated. We find that even more intense dust eruptions occur when the light source is turned off. We attribute this to a compression of gas by thermal creep in response to the changing temperature gradients in the top dust layers. The effect is studied at a light flux of 13 kW/m2 and 1 mbar ambient pressure. The effect is applicable to protoplanetary disks and Mars. In the inner part of protoplanetary disks, planetesimals can be eroded especially at the terminator of a rotating body. This leads to the production of dust which can then be transported towards the disk edge or the outer disk regions. The generated dust might constitute a significant fraction of the warm dust observed in extrasolar protoplanetary disks. We estimate erosion rates of about 1 kg s?1 for 100 m parent bodies. The dust might also contribute to subsequent planetary growth in different locations or on existing protoplanets which are large enough not to be susceptible to particle loss by light induced ejection. Due to the ejections, planetesimals and smaller bodies will be accelerated or decelerated and drift outward or inward, respectively. The effect might also explain the entrainment of dust in dust devils on Mars, especially at high altitudes where gas drag alone might not be sufficient. 相似文献
13.
Jian-Yang Li Dennis Bodewits Lori M. Feaga Wayne Landsman Michael F. A’Hearn Max J. Mutchler Christopher T. Russell Lucy A. McFadden Carol A. Raymond 《Icarus》2011,216(2):640-649
We report a comprehensive review of the UV–visible spectrum and rotational lightcurve of Vesta combining new observations by Hubble Space Telescope and Swift Gamma-ray Burst Observatory with archival International Ultraviolet Explorer observations. The geometric albedos of Vesta from 220 nm to 953 nm are derived by carefully comparing these observations from various instruments at different times and observing geometries. Vesta has a rotationally averaged geometric albedo of 0.09 at 250 nm, 0.14 at 300 nm, 0.26 at 373 nm, 0.38 at 673 nm, and 0.30 at 950 nm. The linear spectral slope as measured between 240 and 320 nm in the ultraviolet displays a sharp minimum near a sub-Earth longitude of 20°, and maximum in the eastern hemisphere. This is consistent with the longitudinal distribution of the spectral slope in the visible wavelength. The photometric uncertainty in the ultraviolet is ∼20%, and in the visible wavelengths it is better than 10%. The amplitude of Vesta’s rotational lightcurves is ∼10% throughout the range of wavelengths we observed, but is smaller at 950 nm (∼6%) near the 1-μm band center. Contrary to earlier reports, we found no evidence for any difference between the phasing of the ultraviolet and visible/near-infrared lightcurves with respect to sub-Earth longitude. Vesta’s average spectrum between 220 and 950 nm can well be described by measured reflectance spectra of fine particle howardite-like materials of basaltic achondrite meteorites. Combining this with the in-phase behavior of the ultraviolet, visible, and near-infrared lightcurves, and the spectral slopes with respect to the rotational phase, we conclude that there is no global ultraviolet/visible reversal on Vesta. Consequently, this implies a lack of global space weathering on Vesta, as previously inferred from visible–near-infrared data. 相似文献
14.
Share G.H. Murphy R.J. Dennis B.R. Schwartz R.A. Tolbert A.K. Lin R.P. Smith D.M. 《Solar physics》2002,210(1-2):357-372
The RHESSI high-resolution spectrometer detected γ-ray lines and continuum emitted by the Earth's atmosphere during impact
of solar energetic particles in the south polar region from 16:00–17:00 UT on 21 April 2002. The particle intensity at the
time of the observation was a factor of 10–100 weaker than previous events when gamma-rays were detected by other instruments.
This is the first high-resolution observation of atmospheric gamma-ray lines produced by solar energetic particles. De-excitation
lines were resolved that, in part, come from 14N at 728, 1635, 2313, 3890, and 5106 keV, and the 12C spallation product at ∼ 4439 keV. Other unresolved lines were also detected. We provide best-fit line energies and widths
and compare these with moderate resolution measurements by SMM of lines from an SEP event and with high-resolution measurements
made by HEAO 3 of lines excited by cosmic rays. We use line ratios to estimate the spectrum of solar energetic particles that
impacted the atmosphere. The 21 April spectrum was significantly harder than that measured by SMM during the 20 October 1989
shock event; it is comparable to that measured by Yohkoh on 15 July 2000. This is consistent with measurements of 10–50 MeV protons made in space at the time of the γ-ray observations. 相似文献
15.
Giancarlo Bellucci Joern Helbert Francesca Altieri Dennis Reiss Jean-Pierre Bibring Stephan van Gasselt Harald Hoffmann Yves Langevin Gerhard Neukum Franois Poulet 《Icarus》2007,192(2):361-377
In this paper we report about a small region on the northern scarp of Olympus Mons showing an increase of the 3 μm hydration band in the OMEGA spectra, together with low superficial temperatures. Although water ice clouds can occurs on the flank of big martian volcanoes, radiative transfer modeling indicates that atmospheric water ice alone cannot justify the shape of the observed band. A fit of the 1.9–3 μm absorption features is obtained by hypothesizing that the study region consists of a mixture of dust and water ice covered by an optically thin (τ=0.08 at 3 μm) layer of dust. Thermal modeling also suggests that water ice in this region may be stable during most of the martian year due to the saturation of the atmosphere. If water ice is responsible for the observed spectral behavior, it might consist of a number of ice or snow patches possibly deposited in small depressions. 相似文献
16.
In this paper we discuss the initial phase of chromospheric evaporation during a solar flare observed with instruments on the Solar Maximum Mission on May 21, 1980 at 20:53 UT. Images of the flaring region taken with the Hard X-Ray Imaging Spectrometer in the energy bands from 3.5 to 8 keV and from 16 to 30 keV show that early in the event both the soft and hard X-ray emissions are localized near the footpoints, while they are weaker from the rest of the flaring loop system. This implies that there is no evidence for heating taking place at the top of the loops, but energy is deposited mainly at their base. The spectral analysis of the soft X-ray emission detected with the Bent Crystal Spectrometer evidences an initial phase of the flare, before the impulsive increase in hard X-ray emission, during which most of the thermal plasma at 107 K was moving toward the observer with a mean velocity of about 80 km s-1. At this time the plasma was highly turbulent. In a second phase, in coincidence with the impulsive rise in hard X-ray emission during the major burst, high-velocity (370 km s-1) upward motions were observed. At this time, soft X-rays were still predominantly emitted near the loop footpoints. The energy deposition in the chromosphere by electrons accelerated in the flare region to energies above 25 keV, at the onset of the high-velocity upflows, was of the order of 4 × 1010 erg s-1 cm-2. These observations provide further support for interpreting the plasma upflows as the mechanism responsible for the formation of the soft X-ray flare, identified with chromospheric evaporation. Early in the flare soft X-rays are mainly from evaporating material close to the footpoints, while the magnetically confined coronal region is at lower density. The site where upflows originate is identified with the base of the loop system. Moreover, we can conclude that evaporation occurred in two regimes: an initial slow evaporation, observed as a motion of most of the thermal plasma, followed by a high-speed evaporation lasting as long as the soft X-ray emission of the flare was increasing, that is as long as plasma accumulation was observed in corona. 相似文献
17.
Dale P. Cruikshank Allan W. Meyer Roger N. Clark Katrin Stephan Scott A. Sandford Gianrico Filacchione Philip D. Nicholson Thomas B. McCord J. Brad Dalton Dennis L. Matson 《Icarus》2010,206(2):561-572
Several of the icy satellites of Saturn show the spectroscopic signature of the asymmetric stretching mode of C-O in carbon dioxide (CO2) at or near the nominal solid-phase laboratory wavelength of 4.2675 μm (2343.3 cm−1), discovered with the Visible-Infrared Mapping Spectrometer (VIMS) on the Cassini spacecraft. We report here on an analysis of the variation in wavelength and width of the CO2 absorption band in the spectra of Phoebe, Iapetus, Hyperion, and Dione. Comparisons are made to laboratory spectra of pure CO2, CO2 clathrates, ternary mixtures of CO2 with other volatiles, implanted and adsorbed CO2 in non-volatile materials, and ab initio theoretical calculations of CO2 * nH2O. At the wavelength resolution of VIMS, the CO2 on Phoebe is indistinguishable from pure CO2 ice (each molecule’s nearby neighbors are also CO2) or type II clathrate of CO2 in H2O. In contrast, the CO2 band on Iapetus, Hyperion, and Dione is shifted to shorter wavelengths (typically ∼4.255 μm (∼2350.2 cm−1)) and broadened. These wavelengths are characteristic of complexes of CO2 with different near-neighbor molecules that are encountered in other volatile mixtures such as with H2O and CH3OH, and non-volatile host materials like silicates, some clays, and zeolites. We suggest that Phoebe’s CO2 is native to the body as part of the initial inventory of condensates and now exposed on the surface, while CO2 on the other three satellites results at least in part from particle or UV irradiation of native H2O plus a source of C, implantation or accretion from external sources, or redistribution of native CO2 from the interior.The analysis presented here depends on an accurate VIMS wavelength scale. In preparation for this work, the baseline wavelength calibration for the Cassini VIMS was found to be distorted around 4.3 μm, apparently as a consequence of telluric CO2 gas absorption in the pre-launch calibration. The effect can be reproduced by convolving a sequence of model detector response profiles with a deep atmospheric CO2 absorption profile, producing distorted detector profile shapes and shifted central positions. In a laboratory blackbody spectrum used for radiance calibration, close examination of the CO2 absorption profile shows a similar deviation from that expected from a model. These modeled effects appear to be sufficient to explain the distortion in the existing wavelength calibration now in use. A modification to the wavelength calibration for 13 adjacent bands is provided. The affected channels span about 0.2 μm centered on 4.28 μm. The maximum wavelength change is about 10 nm toward longer wavelength. This adjustment has implications for interpretation of some of the spectral features observed in the affected wavelength interval, such as from CO2, as discussed in this paper. 相似文献
18.
Krieger’s conceptualization and measurement of discrimination and internalized oppression in studies of adverse health outcomes 总被引:1,自引:1,他引:0
Embodiment is a central concept in Krieger’s ecosocial theory, and is said to be of relevance to the understanding of the relationship between social conditions and a variety of adverse health outcomes. The most detailed empirical investigation of this in Krieger’s work is to be found in her studies of the relationship between racial discrimination and high blood pressure. Of especial relevance here is the idea of internalized oppression which is said to explain the observed association between self-reports of no racial discrimination and increased levels of blood pressure among working-class African Americans. Here we critically examine the empirical evidence pertaining to internalized oppression. Specifically, we focus on the measurement of the construct and the quality of the empirical evidence that has been presented in support of the hypothesis that there is an association between internalized oppression and adverse health outcomes. We argue that the validity of the concept has yet to be established and that the available data linking it to poor health outcomes are open to alternative explanations, notably measurement error and misclassification.
相似文献
Eugenia CondeEmail: |
19.
Observations are briefly discussed of an event in which microwave and hard X-ray emissions were not correlated in the accepted way. Two impulsive peaks of roughly equal intensity were observed at three different microwave frequencies. The hard X-ray peaks accompanying these, however, differ in intensity by almost two orders of magnitude. Various possible interpretations of this burst are discussed, in the context of familiar models of these emissions. The most likely explanation is that the electron spectrum in the first burst has a break at about 350 keV. General implications for interpretation of X-rays and microwaves are discussed.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985. 相似文献
20.
We study the spatial and temporal characteristics of the 3.5 to 30.0 keV emission in a solar flare on April 10, 1980. The data were obtained by the Hard X-ray Imaging Spectrometer aboard the Solar Maximum Mission Satellite. It is complemented in our analysis with data from other instruments on the same spacecraft, in particular that of the Hard X-ray Burst Spectrometer.Key results of our investigation are: (a) Continuous energy release is needed to substain the increase of the emission through the rising phase of the flare, before and after the impulsive phase in hard X-rays. The energy release is characterized by the production of hot (5 × 107 T 1.5 × 108 K) thermal regions within the flare loop structures. (b) The observational parameters characterizing the impulsive burst show that it is most likely associated with non-thermal processes (particle acceleration). (c) The continuous energy release is associated with strong chromospheric evaporation, as evidenced in the spectral line behavior determined from the Bent Crystal Spectrometer data. Both processes seem to stop just before flare maximum, and the subsequent evolution is most likely governed by the radiative cooling of the flare plasma. 相似文献