首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   680篇
  免费   25篇
测绘学   28篇
大气科学   92篇
地球物理   150篇
地质学   198篇
海洋学   61篇
天文学   92篇
综合类   2篇
自然地理   82篇
  2021年   7篇
  2020年   8篇
  2019年   5篇
  2018年   12篇
  2017年   13篇
  2016年   26篇
  2015年   10篇
  2014年   18篇
  2013年   34篇
  2012年   31篇
  2011年   28篇
  2010年   28篇
  2009年   30篇
  2008年   24篇
  2007年   21篇
  2006年   22篇
  2005年   22篇
  2004年   15篇
  2003年   16篇
  2002年   23篇
  2001年   14篇
  2000年   20篇
  1999年   13篇
  1998年   8篇
  1997年   12篇
  1996年   11篇
  1995年   12篇
  1994年   9篇
  1993年   12篇
  1992年   8篇
  1991年   6篇
  1990年   5篇
  1989年   5篇
  1988年   11篇
  1987年   9篇
  1986年   10篇
  1985年   14篇
  1984年   10篇
  1983年   16篇
  1982年   14篇
  1981年   12篇
  1980年   16篇
  1979年   6篇
  1978年   10篇
  1977年   11篇
  1976年   7篇
  1975年   7篇
  1974年   4篇
  1973年   5篇
  1961年   2篇
排序方式: 共有705条查询结果,搜索用时 671 毫秒
181.
The Vandfaldsdalen macrodike, which lies in the Skaergaard region of East Greenland, is a remarkably zoned fossil magma chamber, with a granophyric cap overlying cumulate gabboros. The intrusion is distinctly bimodal, with a large compositional discontinuity at the contact between the gabbro and granophyre. Although the exposed part of the macrodike is in contact with Tertiary basalts and sediments, the granophyre originated by assimilation of xenoliths derived from the underlying Archean basement. Sr and Nd isotopic ratios throughout the cumulate sequence are remarkably similar, indicating insignificant contamination of the gabbro by the granophyre. Modelling of the compositional effects of cooling and crystallization indicate that the cumulate pile resulted from fractional crystallization, with the complicating effects of trapped liquid and post-cumulus fractionation. The uppermost rocks in the mafic part, of the chamber (SiO2=62%; FeO*=12.4%) resulted from about 85% fractional crystallization. A transgressive sill of strongly fractionated magma (SiO2=67%; FeO*=8.8%) formed from extracted intercumulus liquid that was the result of 90% fractional crystallization of the original magma. Mass-balance indicates that typical granophyre is made up of about 75% dissolved xenoliths, by weight, and 25% mantle-derived basaltic magma. The magmas were not measurably affected by material exchange across the interface between the gabbro and granophyre. This magma chamber evolved by both assimilation and fractional crystallization, but the residual liquids formed by fractional crystallization were unaffected by assimilation. Heat exchange between were unaffected by assimilation. Heat exchange between the two parts of the chamber was obviously important, but there was insignificant material exchange. The inability of fractional crystallization and assimilation to affect the same liquid is related to the dynamic behavior of this particular magma chamber, particularly the buoyancy of granophyre relative to evolving tholeiitic magma.  相似文献   
182.
183.
184.
Orca Basin is a highly reducing basin on the slope of the Gulf of Mexico. Stable carbon isotope ratios and total organic carbon percentages were determined for two cores within the basin and one control core outside the basin. The results show that the organic carbon content of the basin cores is consistently 2–3 times greater than that of the control core. The Pleistocene-Holocene boundary, indicated by a break in the δ13C depth profile, occurs at a greater sediment depth in the basin cores than in the control core. A small sampling interval has made it possible to detect an unexplained fine structure in the δ13C profile not previously observed.  相似文献   
185.
Temperature acclimation influenced the desiccation tolerance of the marine snail Ilyanassa obsoleta (Nassarius obsoletus). I. obsoleta acclimated to 35‰ seawater at 18°C could survive for 116 hours, and tolerate a 57% loss of body water when desiccated at 15 °C in air with a relative humidity of 35%. In contrast, I. obsoleta acclimated to 3°C seawater survived for only 76 hours, and could not tolerate more than a 37% loss of body water. These results were used to support the proposition that freezing and desiccation tolerance are closely related in I. obsoleta.  相似文献   
186.
187.
The Parece Vela Basin is a back-arc basin. It is approximately 5000 m deep and is divided into two topographic provinces by the north-trending Parece Vela Rift. The western province is thinly sedimented and topographically rough. The eastern province is blanketed by a thick apron of volcaniclastic sediments which were derived from the West Mariana Ridge. The Parece Vela Rift is composed of a series of discrete deeps and troughs with depths commonly of 6 km and locally exceeding 7 km.Petrologic and seismic refraction data indicate that the Parece Vela Basin is of oceanic character.Low-amplitude, nort-trending, lineated magnetic anomalies are present in the basin and appear symmetric about a line near the Parece Vela Rift. In the central latitudes of the basin seafloor spreading anomalies 10 (30 m.y. B.P.) to 5E or 5D (18 or 17 m.y. B.P.) can be identified. The uncertainty in identifying the youngest anomaly may be due to ridge jumps near the end of spreading. Spreading may have started slightly later in the northern end of the basin. Anomalies in the eastern province are disrupted and are difficult to correlate. DSDP results indicate post-spreading volcanism on the eastern side of the basin and this may have degraded the anomalies. The age obtained in the western province of the basin at DSDP Site 449 (~25m.y. B.P.) is in close agreement with that obtained from the magnetic data (~26m.y. B.P.).It is hypothesized that subduction was occurring at a west-dipping subduction zone east of the Palau-Kyushu Ridge in the Early Oligocene. This volcanic arc split about 31 or 32 m.y. ago and interarc spreading was initiated between the Palau-Kyushu Ridge (which then became a remnant arc) and the West Mariana Ridge. The Parece Vela Basin formed between the ridges by two-limb seafloor spreading. Spreading stopped about 17 or 18 m.y. ago.Like certain other marginal basins, the Parece Vela Basin is deeper than predicted from depth vs. age curves. The average heat flow for the Parece Vela Basin is in agreement with that predicted from heat flow vs. age curves.The origin of the Parece Vela Rift is unclear. It may represent the extinct spreading center or may be a postspreading feature.  相似文献   
188.
We have obtained additional evidence for the Early Carboniferous paleomagnetic field for cratonic North America from study of the Barnett Formation of central Texas. A characteristic magnetization of this unit was isolated after thermal demagnetization at four sites (36 samples) out of eight sites (65 samples) collected. The mean direction of declination = 156.3°, inclination = 5.8° (N = 4 ,k = 905 , α95 = 3.0°), corresponds to a paleomagnetic pole position at lat. = 49.1°N,long. = 119.3°E (dp = 1.5° , dm = 3.0°). Field evidence suggests that characteristic magnetization was acquired very early in the history of the rock unit whereas the rejected sites are comprised of weakly magnetized limestones dominated by secondary components near the present-day field direction. Comparison of the Barnett pole with other Early Carboniferous (Mississippian) paleopoles from North America shows that it lies close to the apparent polar wander path for stable North America and that the divergence of paleopoles from the Northern Appalachians noted previously for the Devonian persisted into the Early Carboniferous. We interpret this difference in paleopoles as further evidence for the Northern Appalachian displaced terrain which we refer to here as Acadia, and the apparent coherence of Late Carboniferous paleopoles as indicating a large (~1500 km) motion of Acadia with respect to stable North America over a rather short time interval in the Carboniferous.  相似文献   
189.
190.
Thermal models detailing the solidification paths for shallow basaltic magma chambers (both open and closed systems) were calculated using finite-difference techniques. The total solidification time for closed chambers are comparable to previously published calculations; however, the temperature-time paths are not. These paths are dependent on the phase relations and the crystallinity of the system, because both affect the manner in which the latent heat of crystallization is distributed.In open systems, where a chamber would be periodically replenished with additional parental liquid, calculations indicate that the possibility is strong that a steady-state temperature interval is achieved near a major phase boundary. In these cases it is straightforward to analyze fractionation models of the basaltic liquid evolution and their corresponding cumulate sequences. This steady thermal fractionating state can be invoked to explain large amounts of erupted basalts of similar composition over long time periods from the same volcanic center and some rhythmically layered basic cumulate sequences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号