首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   680篇
  免费   25篇
测绘学   28篇
大气科学   92篇
地球物理   150篇
地质学   198篇
海洋学   61篇
天文学   92篇
综合类   2篇
自然地理   82篇
  2021年   7篇
  2020年   8篇
  2019年   5篇
  2018年   12篇
  2017年   13篇
  2016年   26篇
  2015年   10篇
  2014年   18篇
  2013年   34篇
  2012年   31篇
  2011年   28篇
  2010年   28篇
  2009年   30篇
  2008年   24篇
  2007年   21篇
  2006年   22篇
  2005年   22篇
  2004年   15篇
  2003年   16篇
  2002年   23篇
  2001年   14篇
  2000年   20篇
  1999年   13篇
  1998年   8篇
  1997年   12篇
  1996年   11篇
  1995年   12篇
  1994年   9篇
  1993年   12篇
  1992年   8篇
  1991年   6篇
  1990年   5篇
  1989年   5篇
  1988年   11篇
  1987年   9篇
  1986年   10篇
  1985年   14篇
  1984年   10篇
  1983年   16篇
  1982年   14篇
  1981年   12篇
  1980年   16篇
  1979年   6篇
  1978年   10篇
  1977年   11篇
  1976年   7篇
  1975年   7篇
  1974年   4篇
  1973年   5篇
  1961年   2篇
排序方式: 共有705条查询结果,搜索用时 93 毫秒
131.
Cadmium (Cd) concentrations in the coastal United States were assessed using the National Status and Trends (NS&T) Mussel Watch dataset, which is based on the analysis of sediments and bivalves collected from 280 sites since 1986. Using the 1997 sediment data, Pearson correlation (r = 0.44, p < 0.0001) suggested that Cd distributions in sediment can, be to some extent, explained by the proximity of sites to population centers. The 2003 tissue data indicated that “high” Cd concentrations (greater than 5.6 μg/g dry weights [dw] for mussel and 5.4 μg/g dw for oysters) were related to salinity along the East and Gulf coasts. Along the West coast, however, these “high” sites appeared to be related to upwelling phenomenon. Additionally, sedimentary diagenesis was found to be the most likely explanation of why sediment and mollusk Cd content were not well correlated.  相似文献   
132.
133.
Investment and regional development in Post-Mao China   总被引:4,自引:0,他引:4  
This paper investigates China's changing investment systems, investment patterns and their impact on regional development. It reveals that the reforms have brought profound changes to Mao's investment system and investment allocation. Investment decentralization has given localities considerable autonomy and incentives in economic development. Budgetary investment has declined dramatically while enterprise funds, bank loans and foreign investment have increased significantly in China. An increasing amount of these new sources of fixed investment have been channeled to more profitable non-state sectors. In terms of regional changes, China's coastal provinces, particularly Guangdong, Jiangsu, and Zhejiang have recorded more rapid investment growth and have much higher per capita investment than many interior provinces. In addition, investment in the coastal provinces relies less on the state and is more profitable than that in the poorer interior. The sectoral and regional unevenness of fixed investment has significantly contributed to the uneven regional development in China. This research also has important theoretical implications, as it shows that regional investment is neither a cumulative causation process nor a convergent process, but influenced greatly by government policy, local states and local conditions, and foreign capital. An analysis of these factors should improve the understanding of investment allocation and regional development, especially for the transition economy in which the control and capacity of the central state has declined, while local and global forces have emerged as equally important forces shaping spatial change.  相似文献   
134.
The dual-nuclei spatial structurs is composed of a regional central city,a port city and their spatial relations in certain regions.In general,this spatial structure could be found in most of the coastal regions or regions along big rivers.In terms of the mechanism,the dual-nuclei structure is the result of the spatial interaction and the complementary characteristics of the center city and the port city.The “marginal function” of the port city and its relationship with the central city has long been discussed in the literature.On the one hand,drainage area is the main natural grographical background of the formation of the dual-nuclei spatial structure;therefore,we can build a theoretical geographic structure that is based on the drainage area.On the other hand,vicissitude of the coastline also has important influence on the formation of the dual-nuclei spatial structure.It is especially meaningful if we can notice this when we examine deeply the research on the spatial structure of delta.  相似文献   
135.
Ultrasonic compressional‐ and shear‐wave velocities have been measured on 34 samples of sandstones from hydrocarbon reservoirs. The sandstones are all of low clay content, high porosity, and cover a wide range of permeabilities. They were measured dry and brine‐saturated under hydrostatic effective stresses of 10, 20 and 40 MPa. For eight of the sandstones, ultrasonic velocity measurements were made at different partial water saturations in the range from dry to fully saturated. The Gassmann–Biot theory is found to account for most of the changes in velocities at high effective stress levels when the dry sandstones are fully saturated with brine, provided the lower velocities resulting when the dry sandstone initially adsorbs small amounts of moisture are used to determine the elastic properties of the ‘dry’ sandstone. At lower effective stress levels, local flow phenomena due to the presence of open microcracks are assumed to be responsible for measured velocities higher than those predicted by the theory. The partial saturation results are modelled fairly closely by the Gassmann–Biot theory, assuming heterogeneous saturation for P‐waves.  相似文献   
136.
We assess the potential impacts of climate change on the hydrology and water resources of the Nile River basin using a macroscale hydrology model. Model inputs are bias corrected and spatially downscaled 21st Century simulations from 11 General Circulation Models (GCMs) and two global emissions scenarios (A2 and B1) archived from the 2007 IPCC Fourth Assessment Report (AR4). While all GCMs agree with respect to the direction of 21st Century temperature changes, there is considerable variability in the magnitude, direction, and seasonality of projected precipitation changes. Our simulations show that, averaged over all 11 GCMs, the Nile River is expected to experience increase in streamflow early in the study period (2010–2039), due to generally increased precipitation. Streamflow is expected to decline during mid- (2040–2069) and late (2070–2099) century as a result of both precipitation declines and increased evaporative demand. The predicted multimodel average streamflow at High Aswan Dam (HAD) as a percentage of historical (1950–1999) annual average are 111 (114), 92 (93) and 84 (87) for A2 (B1) global emissions scenarios. Implications of these streamflow changes on the water resources of the Nile River basin were analyzed by quantifying the annual hydropower production and irrigation water release at HAD. The long-term HAD release for irrigation increases early in the century to 106 (109)% of historical, and then decreases to 87 (89) and 86 (84)% of historical in Periods II and III, respectively, for the A2 (B1) global emissions scenarios. Egypt’s hydropower production from HAD will be above the mean annual average historical value of about 10,000 GWH for the early part of 21st century, and thereafter will generally follow the streamflow trend, however with large variability among GCMs. Agricultural water supplies will be negatively impacted, especially in the second half of the century.  相似文献   
137.
A monthly index based on the persistence of the westerly winds over the English Chanel is constructed for 1685–2008 using daily data from ships’ logbooks and comprehensive marine meteorological datasets. The so-called Westerly Index (WI) provides the longest instrumental record of atmospheric circulation currently available. Anomalous WI values are associated with spatially coherent climatic signals in temperature and precipitation over large areas of Europe, which are stronger for precipitation than for temperature and in winter and summer than in transitional seasons. Overall, the WI series accord with the known European climatic history, and reveal that the frequency of the westerlies in the eastern Atlantic during the twentieth century and the Late Maunder Minimum was not exceptional in the context of the last three centuries. It is shown that the WI provides additional and complementary information to the North Atlantic Oscillation (NAO) indices. The analysis of WI series during the industrial era indicates an overall good agreement with the winter and high-summer NAO, with the exception of several multidecadal periods of weakened correlation. These decoupled periods between the frequency and the intensity of the zonal flow are interpreted on the basis of several sources of non-stationarity affecting the centres of the variability of the North Atlantic and their teleconnections. Comparisons with NAO reconstructions and long instrumental indices extending back to the seventeenth century suggest that similar situations have occurred in the past, which call for caution when reconstructing the past atmospheric circulation from climatic proxies. The robustness and extension of its climatic signal, the length of the series and its instrumental nature make the WI an excellent benchmark for proxy calibration in Europe and Greenland.  相似文献   
138.
Corrections accounting for air density fluctuations due to heat and water vapour fluxes must be applied to the measurement of eddy-covariance fluxes when using open-path sensors. Experimental tests and ecosystem observations have demonstrated the important role density corrections play in accurately quantifying carbon dioxide \((\hbox {CO}_{2})\) fluxes, but less attention has been paid to evaluating these corrections for methane \((\hbox {CH}_{4})\) fluxes. We measured \(\hbox {CH}_{4}\) fluxes with open-path sensors over a suite of sites with contrasting \(\hbox {CH}_{4}\) emissions and energy partitioning, including a pavement airfield, two negligible-flux ecosystems (drained alfalfa and pasture), and two high-flux ecosystems (flooded wetland and rice). We found that density corrections successfully re-zeroed fluxes in negligible-flux sites; however, slight overcorrection was observed above pavement. The primary impact of density corrections varied over negligible- and high-flux ecosystems. For negligible-flux sites, corrections led to greater than 100% adjustment in daily budgets, while these adjustments were only 3–10% in high-flux ecosystems. The primary impact to high-flux ecosystems was a change in flux diel patterns, which may affect the evaluation of relationships between biophysical drivers and fluxes if correction bias exists. Additionally, accounting for density effects to high-frequency \(\hbox {CH}_{4}\) fluctuations led to large differences in observed \(\hbox {CH}_{4}\) flux cospectra above negligible-flux sites, demonstrating that similar adjustments should be made before interpreting \(\hbox {CH}_{4}\) cospectra for comparable ecosystems. These results give us confidence in \(\hbox {CH}_{4}\) fluxes measured by open-path sensors, and demonstrate that density corrections play an important role in adjusting flux budgets and diel patterns across a range of ecosystems.  相似文献   
139.
Groundwater can be important in regulating stream thermal regimes in cold, temperate regions, and as such, it can be a significant factor for aquatic biota habits and habitats. Groundwater typically remains at a constant temperature through time; that is, it is warmer than surface water in winter and cooler in summer. Further, small tributaries are often dominated by groundwater during low flows of winter and summer. We exploit these thermal patterns to identify and delineate tributary/groundwater inputs along a frozen river (ice‐on) using publically available satellite data, and we tested the findings against airborne, thermal infrared (TIR) data. We utilize a supervised maximum likelihood classification (sMLC) to identify possible groundwater inputs while the river is in a frozen state (kappa coefficient of 96.77 when compared with visually delineated possible groundwater inputs). We then compare sMLC‐identified possible groundwater inputs with TIR‐classified groundwater inputs, which confirmed that there was no statistical difference (χ2 = .78), that is, confirming that groundwater inputs can be delineated in north temperate river systems using available satellite imagery of the system's frozen state. Our results also established the spatial extent and influence of possible groundwater inputs in two seasons. The thermal plumes were longer and narrower in winter; this is likely related to seasonal differences in dispersion regimes. We hypothesize that differences between summer and winter is related to either (a) tributaries that are modulated by shading in summer or (b) aquifer disconnection from the river in winter owing to frozen ground conditions and lack of aquifer recharge. This method of establishing tributary/groundwater inputs and contributions to surface water thermal regimes is relatively simple and can be useful for science and management as long as “ice cover exists”; that is, the system can achieve a frozen state.  相似文献   
140.
Plant litter can be incorporated into topsoil by a natural process, affecting the soil erosion process. This is a widespread phenomenon in erosion-prone areas. This study was conducted to investigate the effect of litter incorporation on the process of soil detachment on the Loess Plateau, China. Four common plant litters (Bothriochloa ischaemum L. Keng., Artemisia sacrorum Ledeb., Setaria viridis L. Beauv., and Artemisia capillaris Thunb.) were collected, then incorporated into the silt loam soil at five rates (0.1, 0.4, 0.7, 1.0, and 1.3 kg m−2) on the basis of our field investigation. Twenty litter–soil treatments and one bare soil control were prepared. After 50 days of natural stabilization, 30 soil samples of each treatment were collected. We used a flume test to scour the soil samples under six flow shear stress conditions (5.66, 8.31, 12.21, 15.55, 19.15, and 22.11 Pa). The results showed that the different incorporated litter masses and morphological characteristics, such as litter tissue density (ranging from 0.52 to 0.68 g cm−3), length density (2.34 to 91.00 km m−3), surface area density (LSAD; 27.9 to 674.2 m2 m−3), and volume ratio (0.003 to 0.050 m3 m−3), caused varied soil detachment capacities (0.043 to 4.580 kg·m−2·s−1), rill erodibilities (0.051 to 0.237 s m−1), and critical shear stresses (2.02 to 6.83 Pa). The plant litter incorporated within the soil reduced the soil detachment capacities by 38%–59%, lowered the rill erodibilities by 32%–46%, and increased the critical shear stresses by 98%–193% compared with the bare soil control. The soil containing B. ischaemum (L.) Keng. litter was more resistant to erosion. By comparing different parameters, we found that the contact area between the litter and soil was the main factor affecting the soil detachment process. The soil erosion resistance increased with the increasing contact area between the soil and litter. Furthermore, the litter incorporation effect on rill erodibility can be comprehensively reflected by LSAD (R2 = .93; Nash–Sutcliffe efficiency = 0.79), which could be used to adjust the rill erodibility parameter in physical process-based soil erosion models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号