首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   2篇
  国内免费   4篇
地球物理   10篇
地质学   54篇
海洋学   7篇
天文学   5篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   6篇
  2015年   1篇
  2014年   4篇
  2013年   4篇
  2012年   6篇
  2011年   5篇
  2010年   9篇
  2009年   5篇
  2008年   7篇
  2007年   2篇
  2006年   3篇
  2005年   5篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  1993年   1篇
  1991年   1篇
排序方式: 共有76条查询结果,搜索用时 15 毫秒
21.
Zircon (U‐Th‐Sm)/He (ZHe) thermochronometry is a powerful tool that has been widely used in geology to constrain the exhumation histories of orogens. In this study, we present an alternative protocol for dissolving zircon grains for determination of parent nuclides. This new alkali fusion procedure developed at the SARM (Service d'Analyse des Roches et des Minéraux) in Nancy, France, is fast (requiring only 2 d, including cleaning steps) and offers several advantages over conventional methods by avoiding: (i) use of HF pressure dissolution and (ii) complete removing of grains from the metal microvials. After dissolution, U, Th and Sm were measured using an ICP‐MS. We tested the new procedure on two different ZHe reference materials, the Fish Canyon Tuff and Buluk Tuff; these provided precision values for ZHe‐age estimations of 9 and 6% (1s), respectively. In addition, using this method, zircons from the Buluk Tuff are shown to be chemically more homogenous and more suitable for assessing the uncertainty of the entire integrated procedure.  相似文献   
22.
This study presents a high-resolution multi-proxy investigation of sediment core MD03-2601 and documents major glacier oscillations and deep water activity during the Holocene in the Adélie Land region, East Antarctica. A comparison with surface ocean conditions reveals synchronous changes of glaciers, sea ice and deep water formation at Milankovitch and sub-Milankovitch time scales. We report (1) a deglaciation of the Adélie Land continental shelf from 11 to 8.5 cal ka BP, which occurred in two phases of effective glacier grounding-line retreat at 10.6 and 9 cal ka BP, associated with active deep water formation; (2) a rapid glacier and sea ice readvance centred around 7.7 cal ka BP; and (3) five rapid expansions of the glacier–sea ice systems, during the Mid to Late Holocene, associated to a long-term increase of deep water formation. At Milankovich time scales, we show that the precessionnal component of insolation at high and low latitudes explains the major trend of the glacier–sea ice–ocean system throughout the Holocene, in the Adélie Land region. In addition, the orbitally-forced seasonality seems to control the coastal deep water formation via the sea ice–ocean coupling, which could lead to opposite patterns between north and south high latitudes during the Mid to Late Holocene. At sub-Milankovitch time scales, there are eight events of glacier–sea ice retreat and expansion that occurred during atmospheric cooling events over East Antarctica. Comparisons of our results with other peri-Antarctic records and model simulations from high southern latitudes may suggest that our interpretation on glacier–sea ice–ocean interactions and their Holocene evolutions reflect a more global Antarctic Holocene pattern.  相似文献   
23.
The natural river water reference material SLRS‐6 (NRC‐CNRC) is the newest batch of a quality control material routinely used in many international environmental laboratories. This work presents a nine‐laboratory compilation of measurements of major and trace element concentrations and their related uncertainties, unavailable in the NRC‐CNRC certificate (B, Cs, Li, Ga, Ge, Hf, Nb, P, Rb, Rh, Re, S, Sc, Se, Si, Sn, Th, Ti, Tl, W, Y, Y, Zr and REEs). Measurements were mostly made using inductively coupled plasma‐mass spectrometry. The results are compared with equivalent data for the last batch of the material, SLRS‐5, measured simultaneously with SLRS‐6 in this study. In general, very low concentrations, close to the quantification limits, were found in the new batch. The Sr isotopic ratio is also reported.  相似文献   
24.
The Raspas Metamorphic Complex of southwestern Ecuador is regarded as the southernmost remnant of oceanic and continental terranes accreted in the latest Jurassic–Early Cretaceous. It consists of variably metamorphosed rock types. (1) Mafic and ultramafic rocks metamorphosed under high-pressure (HP) conditions (eclogite facies) show oceanic plateau affinities with flat REE chondrite-normalized patterns, Nd150 Ma ranging from +4.6 to 9.8 and initial Pb isotopic ratios intermediate between MORB and OIB. (2) Sedimentary rocks metamorphosed under eclogitic conditions exhibit LREE enriched patterns, strong negative Eu anomalies, Rb, Nb, U, Th, Pb enrichments, low Nd150 Ma values (from −6.4 to −9.5), and high initial 87Sr/86Sr and 206,207,208Pb/204Pb isotopic ratios suggesting they were originally sediments derived from the erosion of an old continental crust. (3) Epidote-bearing amphibolites show N-MORB affinities with LREE depleted patterns, LILE, Zr, Hf and Th depletion, high Nd150 Ma (>+10) and low initial Pb isotopic ratios.The present-day well defined internal structure of the Raspas Metamorphic Complex seems to be inconsistent with the formerly proposed interpretation of a “tectonic mélange”. The association of oceanic plateau rocks and continent-derived sediments both metamorphosed in HP conditions suggests that the thin edge of the oceanic plateau first entered the subduction zone and dragged sediments downward of the accretionary wedge along the Wadatti–Benioff zone. Subsequently, when its thickest part arrived into the subduction zone, the oceanic plateau jammed the subduction processes, due to its high buoyancy.In Ecuador and Colombia, the latest Jurassic–Early Cretaceous suture involves HP oceanic plateau rocks and N-MORB rocks metamorphosed under lower grades, suggesting a composite or polyphase nature for the latest Jurassic–Early Cretaceous accretionary event.  相似文献   
25.
Lherzolite xenoliths with calcite-rich microgranular secondary aggregates (0.1–1 mm) have been sampled in a Messinian breccia pipe from the northeastern part of the Languedoc volcanic province (South France). Their study shows that the carbonate crystallized at low pressure from a silico-carbonated melt resulting from partial melting of diopside and spinel at depth. This melting has been induced by injection, shortly before the eruption, of CO2 and H2O-rich fluids, stored probably within the upper lithospheric mantle and reset in motion by the magma ascension. These fluids would derive from decarbonation of levels of deeper lithospheric mantle previously metasomatized by carbonatitic melts. To cite this article: J.-M. Dautria et al., C. R. Geoscience 338 (2006).  相似文献   
26.
Stable carbon isotopes were used to determine the contribution of emergent demersal zooplankton to the diet of the scyphozoan jellyfish Catostylus mosaicus at Smiths Lake, New South Wales, Australia. A preliminary study in 2004 indicated that there was no difference in the δ13C of ectodermal tissue and mesoglea of the medusae. In 2005, medusae and zooplankton present during the day and night were sampled and isotopic signatures were modelled using IsoSource. Modelling indicated that: (1) mollusc veligers and copepods sampled during the day contributed <13% of the carbon to the jellyfish; (2) copepods sampled at night contributed up to 25%; and (3) the large, emergent decapod Lucifer sp. contributed 88–94%. We hypothesised, therefore, that medusae derive most of their carbon from emergent species of zooplankton. In 2006, sampling done in 2005 was repeated three times over a period of 4 weeks to measure short-term temporal variation in isotopic signatures of medusae and zooplankton, and emergent demersal zooplankton was specifically sampled using emergence traps. Short-term temporal variation in isotopic signatures was observed for some taxa, however, actual variations were small (<1.5‰) and the values of medusae and zooplankton remained consistent relative to each other. IsoSource modelling revealed that mysid shrimp and emergent copepods together contributed 79–100% of the carbon to the jellyfish, and that the maximum possible contribution of daytime copepods and molluscs was only 22%. Jellyfish apparently derive most of their carbon from emergent zooplankton and by capturing small numbers of relatively large taxa, such as Lucifer sp. or mysid shrimp. Small but abundantly captured zooplankton (such as mollusc veligers) contribute only minor amounts of carbon. Jellyfish have a major role in the transfer of carbon between benthic and pelagic food webs in coastal systems.  相似文献   
27.
Annual variability in abundance and population structure of the copepod Eurytemora affinis was studied in the maximum turbidity zone of the Seine Estuary in 2005. An Eulerian sampling strategy was applied monthly from March to July and from September to December. Chlorophyll a and suspended particulate matter (SPM) concentration, copepod abundance and stage distribution, and phytoplankton abundance were measured in sub-surface and near-bottom water during the ebb phase. Total E. affinis abundance was at a maximum in March and April (>200 × 103 ind. m−3), and decreased from May to September (<25 × 103 ind. m−3). This decrease corresponds to annual increases in temperature, salinity, chlorophyll a concentration and phytoplankton abundance, which was dominated by large diatoms, and decreases in SPM and river discharge. The phenology observed in 2005 was almost two months earlier compared to previous studies in the 1990s, when E. affinis reached maximum abundance in May and June. The low proportion of nauplii (<50%) in the population and high abundance of ovigerous females suggests that low recruitment is probably related to anomalously low temperatures in late winter (<5 °C). Whatever the horizontal position of the population in the estuary, adult and late copepodid stages are distributed in higher salinity than naupliar stages. Overall E. affinis population abundance was driven by parameters that characterize water masses at the tidal scale and by river discharge and chlorophyll a at the annual scale. By integrating the tidal effect, the high-frequency sampling protocol used appears to be optimal for investigating annual variability of planktonic communities in megatidal estuaries.  相似文献   
28.
This paper presents the results from an extensive field data collection effort following the December 26, 2004 earthquake and tsunami in Banda Aceh, Sumatra. The data were collected under the auspices of TSUNARISQUE, a joint French-Indonesian program dedicated to tsunami research and hazard mitigation, which has been active since before the 2004 event. In total, data from three months of field investigations are presented, which detail important aspects of the tsunami inundation dynamics in Banda Aceh. These include measurements of runup, tsunami wave heights, flow depths, flow directions, event chronology and building damage patterns. The result is a series of detailed inundation maps of the northern and western coasts of Sumatra including Banda Aceh and Lhok Nga. Among the more important findings, we obtained consistent accounts that approximately ten separate waves affected the region after the earthquake; this indicates a high-frequency component of the tsunami wave energy in the extreme near-field. The largest tsunami wave heights were on the order of 35 m with a maximum runup height of 51 m. This value is the highest runup value measured in human history for a seismically generated tsunami. In addition, our field investigations show a significant discontinuity in the tsunami wave heights and flow depths along a line approximately 3 km inland, which the authors interpret to be the location of the collapse of the main tsunami bore caused by sudden energy dissipation. The propagating bore looked like a breaking wave from the landward side although it has distinct characteristics. Patterns of building damage are related to the location of the propagating bore with overall less damage to buildings beyond the line where the bore collapsed. This data set was built to be of use to the tsunami community for the purposes of calibrating and improving existing tsunami inundation models, especially in the analysis of extreme near-field events.  相似文献   
29.
30.
Debris-flow activity on the forested cone of the Ritigraben torrent (Valais, Swiss Alps) was assessed from growth disturbances in century-old trees, providing an unusually complete record of past events and deposition of material. The study of 2246 tree-ring sequences sampled from 1102 Larix decidua Mill., Picea abies (L.) Karst. and Pinus cembra ssp. sibirica trees allowed reconstruction of 123 events since AD 1566. Geomorphic mapping permitted identification of 769 features related to past debris-flow activity on the intermediate cone. The features inventoried in the study area covering 32 ha included 291 lobes, 465 levées and 13 well-developed debris-flow channels. Based on tree-ring records of disturbed trees growing in or next to the deposits, almost 86% of the lobes identified on the present-day surface could be dated. A majority of the dated material was deposited over the last century. Signs of pre-20th century events are often recognizable in the tree-ring record of survivor trees, but the material that caused the growth anomaly in trees has been completely overridden or eroded by more recent debris-flow activity.Tree-ring records suggest that cool summers with frequent snowfalls at higher elevations regularly prevented the release of debris flows between the 1570s and 1860s; the warming trend combined with greater precipitation totals in summer and autumn between 1864 and 1895 provided conditions that were increasingly favorable for releasing events from the source zone. Enhanced debris-flow activity continued well into the 20th century and reconstructions show a clustering of events in the period 1916–1935 when warm–wet conditions prevailed during summer in the Swiss Alps. In contrast, very low activity is observed for the last 10-yr period (1996–2005) with only one debris-flow event recorded on August 27, 2002. Since sediment availability is not a limiting factor, this temporal absence of debris-flow activity is due to an absence of triggering events, which not only shifted from June and July to August and September over the 20th century, but also seemed to be initiated primarily by persistent precipitation rather than summer thunderstorms. From the reconstructions, based on RCM simulations, there are indications that debris-flow frequencies might continue to decrease in the future, as precipitation events are projected to occur less frequently in summer but become more common in spring or autumn.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号