首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   0篇
  国内免费   35篇
地球物理   15篇
地质学   70篇
海洋学   3篇
天文学   4篇
自然地理   8篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   4篇
  2018年   4篇
  2017年   5篇
  2016年   2篇
  2015年   9篇
  2014年   1篇
  2013年   13篇
  2012年   2篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   4篇
  2003年   1篇
  2001年   5篇
  2000年   1篇
  1998年   3篇
  1997年   5篇
  1996年   3篇
  1995年   2篇
  1993年   3篇
  1992年   2篇
  1991年   4篇
  1990年   1篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
  1981年   1篇
  1979年   1篇
  1977年   2篇
  1975年   1篇
  1972年   2篇
  1970年   1篇
  1969年   1篇
  1967年   1篇
  1966年   2篇
排序方式: 共有100条查询结果,搜索用时 581 毫秒
31.
<正>The ultramafic massif of Bulqiza,which belongs to the eastern ophiolitic belt of Albania,is the most important area for metallurgical chromitite ores.The massif consists of a thick(4 km)rock sequence,with a generalized profile from the bottom to the top as follows.The tectonite  相似文献   
32.
<正>Podiform chromitites are generally lenticular bodies of massive to disseminated chromite typically hosted in mantle peridotites in ophiolites.Most such chromitites are surrounded by envelopes of dunite,a few centimeters to a few meters wide.Based on their textures and compositions,podiform chromitites have been interpreted  相似文献   
33.
34.
35.
36.
Abstract– The feldspathic lunar meteorites contain rare fragments of crystalline basalts. We analyzed 16 basalt fragments from four feldspathic lunar meteorites (Allan Hills [ALHA] 81005, MacAlpine Hills [MAC] 88104/88105, Queen Alexandra Range [QUE] 93069, Miller Range [MIL] 07006) and utilized literature data for another (Dhofar [Dho] 1180). We compositionally classify basalt fragments according to their magma’s estimated TiO2 contents, which we derive for crystalline basalts from pyroxene TiO2 and the mineral‐melt Ti distribution coefficient. Overall, most of the basalt fragments are low‐Ti basalts (1–6% TiO2), with a significant proportion of very‐low‐Ti basalts (<1% TiO2). Only a few basalt clasts were high‐Ti or intermediate Ti types (>10% TiO2 and 6–10% TiO2, respectively). This distribution of basalt TiO2 abundances is nearly identical to that obtained from orbital remote sensing of the moon (both UV‐Vis from Clementine, and gamma ray from Lunar Prospector). However, the distribution of TiO2 abundances is unlike those of the Apollo and Luna returned samples: we observe a paucity of high‐Ti basalts. The compositional types of basalt differs from meteorite to meteorite, which implies that all basalt subtypes are not randomly distributed on the Moon, i.e., the basalt fragments in each meteorite probably represent basalts in the neighborhood of the meteorite launch site. These differences in basalt chemistry and classifications may be useful in identifying the source regions of some feldspathic meteorites. Some of the basalt fragments probably originate from ancient cryptomaria, and so may hold clues to the petrogenesis of the Moon’s oldest volcanism.  相似文献   
37.
38.
Deeply subducted lithospheric slabs may reach to the mantle transition zone(MTZ,410-660 km depth)or even to the core–mantle boundary(CMB)at depths of~2900km.Our knowledge of the fate of subducted surface material at the MTZ or near the CMB is poor and based mainly on the tomography data and laboratory experiments through indirect methods.Limited data come from the samples of deep mantle diamonds and their mineral inclusions obtained from kimberlites and associated rock assemblages in old cratons.We report in this presentation new data and observations from diamonds and other UHP minerals recovered from ophiolites that we consider as a new window into the life cycle of deeply subducted oceanic and continental crust.Ophiolites are fragments of ancient oceanic lithosphere tectonically accreted into continental margins,and many contain significant podiform chromitites.Our research team has investigated over the last 10 years ultrahigh-pressure and super-reducing mineral groups discovered in peridotites and/or chromitites of ophiolites around the world,including the Luobusa(Tibet),Ray-Iz(Polar Urals-Russia),and 12 other ophiolites from 8orogenic belts in 5 different countries(Albania,China,Myanmar,Russia,and Turkey).High-pressure minerals include diamond,coesite,pseudomorphic stishovite,qingsongite(BN)and Ca-Si perovskite,and the most important native and highly reduced minerals recovered to date include moissanite(Si C),Ni-Mn-Co alloys,Fe-Si and Fe-C phases.These mineral groups collectively confirm extremely high?pressures(300 km to≥660 km)and super-reducing conditions in their environment of formation in the mantle.All of the analyzed diamonds have unusually light carbon isotope compositions(δ13C=-28.7 to-18.3‰)and variable trace element contents that*d i stinguish them from most kimberlitic and UHPmetamorphic varieties.The presence of exsolution lamellae of diopside and coesite in some chromite grains suggests chromite crystallization depths around380 km,near the mantle transition zone.The carbon isotopes and other features of the high-pressure and super-reduced mineral groups point to previously subducted surface material as their source of origin.Recycling of subducted crust in the deep mantle may proceed in three stages:Stage 1–Carbon-bearing fluids and melts may have been formed in the MTZ,in the lower mantle or even near the CMB.Stage 2–Fluids or melts may rise along with deep plumes through the lower mantle and reach the MTZ.Some minerals,such as diamond,stishovite,qingsongite and Ca-silicate perovskite can precipitate from these fluids or melts in the lower mantle during their ascent.Material transported to the MTZ would be mixed with highly reduced and UHP phases,presumably derived from zones with extremely low f O2,as required for the formation of moissanite and other native elements.Stage 3–Continued ascent above the transition of peridotites containing chromite and ultrahigh-pressure minerals transports them to shallow mantle depths,where they participate in decompressional partial melting and oceanic lithosphere formation.The widespread occurrence of ophiolite-hosted diamonds and associated UHP mineral groups suggests that they may be a common feature of in-situ oceanic mantle.Because mid-ocean ridge spreading environments are plate boundaries widely distributed around the globe,and because the magmatic accretion of oceanic plates occurs mainly along these ridges,the on-land remnants of ancient oceanic lithosphere produced at former mid-ocean ridges provide an important window into the Earth’s recycling system and a great opportunity to probe the nature of deeply recycled crustal material residing in the deep mantle  相似文献   
39.
High-precision in-situ ion microprobe (SIMS) oxygen isotope analysis of zircons from two diorite intrusions associated with the late Caledonian Lochnagar pluton in Scotland has revealed large differences in the degree of heterogeneity in zircon δ18O between the diorites. Zircon crystals from the Cul nan Gad diorite (CnG) show a unimodal distribution of oxygen isotope values (δ18O = 6.0 ± 0.6‰ (2σ)) and no or only minor grain-scale variation. Those from the Allt Darrarie diorite (AD1) show a large range in δ18O and an apparent bimodal distribution with modes of 6.6 ± 0.4‰ and 7.3 ± 0.4‰. Variations of up to 1.2‰ occur between and within grains; both an increase and decrease in δ18O with zircon growth has been observed. The δ18O composition of growing zircon can only change if open-system processes affect the magma composition, i.e. if material of contrasting δ18O composition is added to the magma. The variability in AD1 is interpreted to represent a cryptic record of magma mixing. A ‘deep crustal hot zone’ is a likely site for generation of the dioritic magmas which developed by mixing of residual melts and crustal partial melts or by melting of mafic lower crustal rocks. The overall small number of zircons with mantle-like δ18O values (5.3 ± 0.6‰ (2σ)) in the Lochnagar diorites is largely the product of crustal differentiation rather than crustal growth.

The δ18O of quartz from the CnG and AD1 diorites shows only minor variation (CnG: 10.9 ± 0.5‰ (2σ), AD1: 11.7 ± 0.6‰ (2σ)) within single populations, with no evidence of mixing. Quartz–zircon isotopic disequilibrium is consistent with later crystallisation of quartz from late magmatic fluids, and in case of the AD1 diorite after the inferred magma mixing from a homogenised, higher δ18O melt.

High-precision SIMS oxygen isotope analysis of zircon provides a new approach to identifying and resolving previously undetected early-stage magma mixing and constraining the compositions and origins of the component magmas. A combination of zircon, quartz and whole-rock data has proven to be a powerful tool in reconstructing the petrogenetic evolution of diorite from early crystallisation to late alteration.  相似文献   

40.
高分辨率的数据对于理解近海的复杂过程以及制定有效的管理措施日益重要,特别是考虑到恶劣气象的长期效应。这种长期效应的积累可以与潮汐的长期效应一样重要。本文讨论的即是一个大气锋面过境的过程对于Vermilion Bay水输运的影响。我们的研究采用了有人船和自制的无人船作为载具来测量流速剖面。这种自制无人船造价低廉、简单实用、可控性好,可以做比有人船更精确的测量。我们采用安装在这些观测载具上的多普勒流速剖面仪在一个潮周期内反复对流速的横向和垂向断面的水通量做高分辨率的精准测量,然后与一个定点的多普勒流速剖面仪的流速做相关分析得出相关系数。利用所求相关系数把水通量的计算扩展到总共717天的定点观测时间段,以此讨论在这个期间最强的一次大气寒潮过境时产生的水输运并阐述此类过程的重要性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号