首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3015篇
  免费   102篇
  国内免费   75篇
测绘学   85篇
大气科学   257篇
地球物理   695篇
地质学   964篇
海洋学   272篇
天文学   703篇
综合类   28篇
自然地理   188篇
  2022年   17篇
  2021年   38篇
  2020年   53篇
  2019年   42篇
  2018年   76篇
  2017年   78篇
  2016年   101篇
  2015年   72篇
  2014年   81篇
  2013年   159篇
  2012年   95篇
  2011年   127篇
  2010年   134篇
  2009年   142篇
  2008年   141篇
  2007年   126篇
  2006年   107篇
  2005年   110篇
  2004年   121篇
  2003年   122篇
  2002年   157篇
  2001年   147篇
  2000年   99篇
  1999年   66篇
  1998年   53篇
  1997年   47篇
  1996年   43篇
  1995年   47篇
  1994年   45篇
  1993年   30篇
  1992年   22篇
  1991年   31篇
  1990年   31篇
  1989年   20篇
  1988年   15篇
  1987年   15篇
  1986年   20篇
  1985年   28篇
  1984年   34篇
  1983年   25篇
  1982年   19篇
  1981年   22篇
  1980年   14篇
  1978年   21篇
  1976年   19篇
  1975年   17篇
  1974年   26篇
  1972年   21篇
  1971年   16篇
  1970年   13篇
排序方式: 共有3192条查询结果,搜索用时 0 毫秒
991.
C. De Jager 《Solar physics》1967,2(3):347-350
Observationally solar X bursts fall into three different categories : soft X bursts (E < 10 keV), deka-keV bursts (10–150 keV), and very hard X bursts or deci-MeV bursts (200–1000 keV). The first kind is quasi-thermal, the last kind is non-thermal. The real existence of the third kind of burst looks probable but has not yet been proved by direct observations. The difference between deci-MeV and deka-keV bursts may mainly be a matter of geometry of the emitting plasma.  相似文献   
992.
993.
994.
995.
The bivariate spectral type-luminosity class distribution combined with thez-distribution and broad-band photometric data have been used in order to derive integrated colors in Johnson's UBVRIJKL system for the solar neighborhood.The frequency distribution of white dwarfs is also taken into account for theU-B, B-V colors.  相似文献   
996.
997.
An empirical method for determining line source functions, previously applied by us to the cores of infrared lines has now been extended to the whole line profile and was applied to centre-limb observations of sixteen lines of five infrared multiplets, mainly of high excitation potential (Table I). The present investigation was performed in two steps. In the first part of the paper approximate values are derived for the depth dependence of the four functions named in the title of this paper, where L is the ratio between the actual and the LTE population of the lower level of the transitions involved. In the second part of the paper we use these empirically derived functions to compute the line profiles. From the remaining differences between observed and computed profiles, corrections are derived to the four functions. The main results are: (a) Convective velocities: see Table IV.(b)(Micro-)turbulent velocities: see Figure 8. Between 5 = 10-4 and 10-1: 1.4 km s-1, which is an upper limit since an unknown contribution of macroscopic motions could not be separated, (c) Line source functions: see Figures 9, 15 and 16. The source functions are close to the black-body function for 5 10-3, slight deviations occur in higher levels. The interesting behaviour of the Caii source function near 5 = 10-5 should be noted. (d) Non LTE-functions: first approximations for the functions log L ( 5) were derived empirically in the first part, and are shown in Figure 10; the second approximation shows them to be too large and the real values seem to be closer to one-half or one-third of these functions.  相似文献   
998.
A fraunhofer line profile depends on various parameters, partly related to the photospheric structure (T, P g, P e, v conv, v turb), partly to the atom or ion involved (such as oscillator strength, energy levels), partly also resulting from the interaction of the relevant kind of particles with the photosphere, and the photospheric radiation field. In this paper we shall mainly pay attention to the determination of: the macroturbulent (convective) velocities, v conv (); the damping constant (); the abundance, A el; the distribution function (v conv, ) of the convective velocities at each depth ; the source function, S (); the microturbulent velocities, v turb ().The particular difficulty with these unknowns is that they are, as a rule, coupled in the resulting line profiles, that is: the shapes and intensities in these profiles are determined by the combined influence of these unknowns (together with the other above-given parameters).In this paper we describe a method to determine these six unknowns empirically by separating them, in analysing accurate high-resolution observations of line profiles of a multiplet. The unknown functions and quantities are consecutively determined in the above given succession. For each determination another, appropriate part of the line profile is used. In some cases the influence of the mutual coupling of the various parameters cannot be completely eliminated, and an iterative method has to be used.The method is summarized in Table II and section 2, and is further explained in sections 3 to 8. It is applied to an infrared Ci multiplet. The main results are the following:  相似文献   
999.
Editorial     
  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号