首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   0篇
  国内免费   1篇
地球物理   1篇
地质学   38篇
  2023年   2篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2016年   2篇
  2013年   4篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   5篇
  2008年   3篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
排序方式: 共有39条查询结果,搜索用时 421 毫秒
21.
This paper presents a review of petrological-geochemical studies at the Yoko-Dovyren Massif with an emphasis on relations between parameters of the parental magma, a model for the genesis of the lower contact zone, and the nature of Ni sulfide ore mineralization, including the evaluation of the possible ore potential. Arguments are presented in support of the conclusion that the Dovyren magma brought much intratelluric olivine of the composition Fo 85–87 into the chamber, and the composition of the initial melt corresponded to gabbronorite or moderately magnesian basite with no more than 10 wt % MgO. The probable temperature of the parental magma was approximately 1200–1250°C, and the sulfur solubility did not exceed 0.10–0.12 wt % (P = 1 kbar, WM buffer). The comparison of this estimate with the average S contents in the bottom plagioperidotites (0.12±0.06 wt %) indicates that the initial magma was saturated with a sulfide phase. For the first time the problem of the composition of contaminated dunites was formulated (these rocks occur in the Layered Series and contain more magnesian olivine Fo 87–92). The reason for the increase in the mg# of olivine is thought to be the partial melting and compaction of the original cumulates due to the infiltration of intercumulus melt enriched in volatile components. The volatiles were presumably provided by the thermal decomposition of carbonate xenoliths, a process that resulted in an increase in the CO2 pressure and the transfer of calcite-magnesite components of carbonates into the melt. This follows from (1) the occurrence of magnesian skarn developing after carbonates, (2) high CaO contents in olivine form the contaminated dunite, (3) the appearance of olivine-bearing pyroxenites and wehrlites in the upper part of the dunite zone, (4) correlation between the olivine and chromite composition in the contaminated and uncontaminated dunites, (5) broad variations in the oxygen isotopic composition of olivine and plagioclase from rocks of the Layered Series, (6) experimental data on the dissolution of carbonates in alkali basalt melts, and (7) analogies with isotopic-geochemical characteristics of rocks from the Jinchuan ultramafic complex. Petrological implications of the interpretation of the Dovyren chamber are discussed with reference to closed and flow-through (during an initial stage) magmatic systems. A petrological-geological model is proposed for the genesis of the Synnyr-Dovyren volcanic-plutonic complex and related Ni sulfide ore mineralization. The potential resources of Cu-Ni sulfide ores in the plagioperidotites are evaluated with regard to the still-unexposed part of the massif.  相似文献   
22.
23.
24.
We describe and model a potential re-equilibration process that can affect compositions of melt inclusions in magnesian olivine phenocrysts. This process, referred to as “Fe-loss”, can operate during natural pre-eruptive cooling of host magma and results in lower FeOt and higher MgO contents within the initially trapped volume of inclusion. The extent of Fe-loss is enhanced by large temperature intervals of magma cooling before eruption. The compositions of homogenised melt inclusions in olivine phenocrysts from several subduction-related suites demonstrate that (1) Fe-loss is a common process, (2) the maximum observed degree of re-equilibration varies between suites, and (3) within a single sample, variable degrees of re-equilibration can be recorded by melt inclusions trapped in olivine phenocrysts of identical composition. Our modelling also demonstrates that the re-equilibration process is fast going to completion, in the largest inclusions in the most magnesian phenocrysts it is completed within 2 years. The results we obtained indicate that the possibility of Fe-loss must be considered when estimating compositions of parental subduction-related magmas from naturally quenched glassy melt inclusions in magnesian olivine phenocrysts. Compositions calculated from glassy inclusions affected by Fe-loss will inherit not only erroneously low FeOt contents, but also low MgO due to the inherited higher Mg##of the residual melt in re-equilibrated inclusions. We also demonstrate that due to the higher MgO contents of homogenised melt inclusions affected by Fe-loss, homogenisation temperatures achieved in heating experiments will be higher than original trapping temperatures. The extent of overheating will increase depending on the degree of re-equilibration, and can reach up to 50 °C in cases where complete re-equilibration occurs over a cooling interval of 200 °C. Received: 2 November 1998 / Accepted: 27 September 1999  相似文献   
25.
We present a detailed mineralogical, petrological and melt inclusion study of unusually fresh, primitive olivine + clinopyroxene phyric Lower Pillow Lavas (LPL) found near Analiondas village in the northeastern part of the Troodos ophiolite (Cyprus). Olivine phenocrysts in these primitive LPL show a wide compositional range (Fo82–92) and have higher CaO contents than those from the Upper Pillow Lavas (UPL). Cr-spinel inclusions in olivine are significantly less Cr-rich (Cr/Cr + Al = 28–67 mol%) compared to those from the UPL (Cr# = 70–80). These features reflect differences in melt compositions between primitive LPL and the UPL, namely higher CaO and Al2O3 and lower FeO* compared to the UPL at a given MgO. LPL parental melts (in equilibrium with Fo92) had ∼10.5 wt% MgO and crystallization temperatures ∼1210 °C, which are significantly lower than those previously published for the UPL (14–15 wt% MgO and ∼1300 °C for Fo92). The fractionation path of LPL parental melts is also different from that of the UPL. It is characterized initially by olivine + clinopyroxene cotectic crystallization joined by plagioclase at ∼9 wt% MgO, whereas UPL parental melts experienced a substantial interval of olivine-only crystallization. Primitive LPL melts were formed from a mantle source which was more fertile than that of tholeiites from well-developed intra-oceanic arcs, but broadly similar in its fertility to that of Mid-Ocean Ridge Basalt (MORB) and Back Arc Basin Basalts (BABB). The higher degrees of melting during formation of the LPL primary melts compared to average MORB were caused by the presence of subduction-related components (H2O). Our new data on the LPL coupled with existing data for the UPL support the existing idea that the LPL and UPL primary melts originated from distinct mantle sources, which cannot be related by progressive source depletion. Temperature differences between these sources (∼150 °C), their position in the mantle (∼10 kbar for the colder LPL source vs 15–18 kbar for the UPL source), and temporal succession of Troodos volcanism, all cannot be reconciled in the framework of existing models of mantle wedge processes, thermal structure and evolution, if a single mantle source is invoked. Possible tectonic settings for the origin of the Troodos ophiolite (forearc regions of intra-oceanic island arc, propagation of backarc spreading into arc lithosphere) are discussed. Received: 20 May 1996 / Accepted: 25 March 1997  相似文献   
26.
Data presented in the paper suggest significant differences between the thermodynamic conditions under which magmatic complexes were formed in MAR at 29°–34° N and 12°–18° N. The melts occurring at 29°–34° N were derived by the melting of a mantle source with a homogeneous distribution of volatile components and arrived at the surface without significant fractionation, likely, due to their rapid ascent. The MAR segments between 12° and 18° N combine contrasting geodynamic environments of magmatism, which predetermined the development of a large plume region with the widespread mixing of the melting products of geochemically distinct mantle sources. At the same time, this region is characterized by conditions favorable for the origin of localized zones of anomalous plume magmatism. These sporadic magmatic sources were spatially restricted to MAR fragments with the Hess crust, whose compositional and mechanical properties were, perhaps, favorable for the focusing and localization of plume magmatism. The plume source between 12° and 18°N beneath MAR may be geochemically heterogeneous.  相似文献   
27.
Summary Several experimentally-based, empirical calibrations of the fO2 of natural silicate melts at atmospheric pressure as a function of melt composition, melt Fe2+/Fe3+, and crystallization temperature have been developed (e.g.Sack et al., 1980;Kilinc et al., 1983;Kress andCarmichael, 1988;Borisov andShapkin, 1990). Cr-Al spinel is a liquidus phase of primitive mantle-derived melts, and is commonly found as inclusions in near-liquidus phenocrysts (mainly olivine). The established atmospheric pressure correlation between Fe2+/Fe3+ values in spinel and coexisting melts over a broad range of basaltic compositions (Maurel andMaurel, 1982) can be used to calculate the Fe2+/Fe3+ value of a melt if the composition of the equilibrium spinel is known. Compositions and crystallization temperatures of primitive melts can be determined by experimental studies of melt inclusions trapped by early-formed refractory phenocrysts. Thus, the association of spinel and melt inclusions in early liquidus phenocrysts can be used to estimate fO2 conditions at the time of their crystallization.In this paper, we present a calibration of this method and discuss its applications. We conclude that combination of the equations ofMaurel andMaurel (1982) andBorisov andShapkin (1990) can be used to calculate fO2 with an accuracy of ±0.71og units, when liquidus spinels have TiO2 <2.5 wt% and Cr2O3 > 13 wt.%, and melt compositions are in the range from basaltic to picritic with H2O contents <6 wt.%.Using this technique we find NNO fO2 values of –0.8 to –1.4 for MORB dredged at the VEMA Fracture Zone in the Atlantic, and 0 to + 1 for Tongan high-Ca boninites.
Die Berechnung von Fe2+/Fe3+ und der Sauerstoff-Fugazitäten für primitive Mantelschmelzen: Kalibration einer empirischen Methode
Zusammenfassung Empirische, auf Experimenten basierende, Kalibrationen zur Berechnung von fO2 natürlicher Silikatschmelzen bei atmosphärischem Druck in Abhängigkeit von der Schmelzzusammensetzung, des Fe2+/Fe3+ Verhältnisses und der Kristallisationstemperatur wurden z.B. vonSack et al. (1980),Kilinc et al. (1983),Kress undCarmichael (1988) undBorisov undShapkin (1980) entwickelt. Cr-Al-Spinell ist eine Liquidusphase primitiver Mantelschmelzen und kommt üblicherweise als Einschluß in near-liquidus Phänokristallen (hauptsächlich in Olivin) vor. Die Korrelation des Atmosphärendruckes zwischen Fe2+/Fe3+ in Spinell und koexistierender Schmelze kann dazu verwendet werden, das Verhältnis von Fe2+/Fe3+ der Schmelze für einen weiten Bereich basaltischer Zusammensetzungen zu berechnen, wenn die Zusammensetzung des im Gleichgewicht gebildeten Spinells bekannt ist (Maurel undMaurel, 1982). Die Zusammensetzungen und Kristallisationstemperaturen primitiver Schmelzen können durch experimentelle Studien von Schmelzeinschlüssen, die in früh gebildeten refraktären Phänokristallen eingeschlossen wurden, ermittelt werden. Daher lassen sich Spinelle und assoziierte Schmelzeinschlüsse in frühen Liquidus-Phänokristallen dazu benützen, die fO2-Bedingungen während der Kristallisation abzuschätzen.In dieser Arbeit präsentieren wir eine neue Kalibration dieser Methode und diskutieren ihre Anwendungen. Wir schlußfolgern, daß unter Kombination der verwendeten Gleichungen vonMaurel undMaurel (1982) sowie vonBorisov undShapkin (1990) fO2 mit einer Genauigkeit von ±0.7 log Einheiten berechnet werden kann, soferne die Liquidus-Spinelle < 2.5 Gew.% TiO2 und > 13 Gew.% Cr2O3 haben und die Schmelzzusammensetzungen von basaltisch bis pikritisch, mit maximal 6 Gew.% H2O, reichen.Unter Verwendung dieser Technik wurden die NNO fO2 Werte für die von der VEMA Fracture Zone im Atlantik stammenden MORB Proben mit 0.8 bis - 1.4, die der der High-Ca Boninite von Tonga mit 0 bis + 1 bestimmt.


With 7 Figures  相似文献   
28.
For the first time, extremely high Se and In contents were determined for the pinches of massive sulfide orebodies that are composed of small-clastic layered sulfide sediments transformed during submarine supergenesis. Se (clausthalite and naumannite) and In (roquesite) minerals were found. Hydrothermal chalcopyrite, a significant amount of which is present in the clasts of paleohydrothermal black smoker chimneys, was the source of Se. Most of the amount of In was contributed during dissolution of clasts of hydrothermal sphalerite, which is unstable in the submarine oxidation zone in the presence of oxidized pyrite.  相似文献   
29.
Geology of Ore Deposits - The formation of present-day seafloor sulfide deposits is accompanied by their continuous oxidation and crystallization of insoluble Fe oxyhydroxides, which absorb metals...  相似文献   
30.
We have determined the near-solidus melt compositions for peridotiteMM-3, a suitable composition for the production of mid-oceanridge basalt (MORB) by decompression partial melting, at 1 and1·5 GPa. At 1 GPa the MM-3 composition has a subsolidusplagioclase-bearing spinel lherzolite assemblage, and a solidusat 1270°C. At only 5°C above the solidus, 4% meltis present as a result of almost complete melting of plagioclase.This melting behaviour in plagioclase lherzolite is predictedfrom simple systems and previous experimental work. The persistenceof plagioclase to > 0·8 GPa is strongly dependenton bulk-rock CaO/Na2O and normative plagioclase content in theperidotite. At 1·5 GPa the MM-3 composition has a subsolidusspinel lherzolite assemblage, and a solidus at 1350°C.We have determined a near-solidus melt composition at 2% meltingwithin 10°C of the solidus. Near-solidus melts at both 1and 1·5 GPa are nepheline normative, and have low normativediopside contents; also they have the highest TiO2, Al2O3 andNa2O, and the lowest FeO and Cr2O3 contents compared with higherdegree partial melts. Comparison of these near-solidus meltswith primitive MORB glasses, which lie in the olivine-only fieldof crystallization at low pressure, indicate that petrogeneticmodels involving aggregation of near-fractional melts formedduring melting at pressures of 1·5 GPa or less are unlikelyto be correct. In this study we use an experimental approachthat utilizes sintered oxide mix starting materials and peridotitereaction experiments. We also examine some recent studies usingan alternative approach of melt migration into, and entrapmentwithin ‘melt traps’ (olivine, diamond, vitreouscarbon) and discuss optimal procedures for this method. KEY WORDS: experimental petrology; mantle melting; near-solidus; fertile peridotite; MORB  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号