首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   548篇
  免费   33篇
  国内免费   9篇
测绘学   19篇
大气科学   32篇
地球物理   134篇
地质学   286篇
海洋学   35篇
天文学   40篇
综合类   8篇
自然地理   36篇
  2023年   4篇
  2022年   12篇
  2021年   19篇
  2020年   11篇
  2019年   12篇
  2018年   53篇
  2017年   31篇
  2016年   56篇
  2015年   11篇
  2014年   42篇
  2013年   52篇
  2012年   26篇
  2011年   22篇
  2010年   13篇
  2009年   21篇
  2008年   12篇
  2007年   16篇
  2006年   16篇
  2005年   10篇
  2004年   9篇
  2003年   15篇
  2002年   10篇
  2001年   9篇
  2000年   12篇
  1999年   7篇
  1998年   4篇
  1996年   4篇
  1995年   7篇
  1994年   4篇
  1993年   2篇
  1992年   3篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1984年   4篇
  1983年   7篇
  1982年   7篇
  1981年   5篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1973年   2篇
  1972年   2篇
  1971年   3篇
  1968年   3篇
  1964年   1篇
  1960年   1篇
排序方式: 共有590条查询结果,搜索用时 46 毫秒
91.
We have studied the attenuation characteristics of eastern Himalaya and southern Tibet by using local earthquake data set that consists of 123 well-located events, recorded by the Himalayan Nepal Tibet Seismic Experiment operated during 2001–2003. We have used single backscattering model to calculate frequency-dependent values of coda Q (\(Q_\mathrm{c}\)). The estimation of \(Q_\mathrm{c}\) is made at central frequencies 2, 4, 8 and 12 Hz through five lapse time windows from 10 to 50 s starting at double the travel time of the S-wave. The observed \(Q_\mathrm{c}\) is found to be strongly frequency-dependent and follows a similar trend as observed in other tectonically active parts of the Himalaya. The trend of variation of \(Q_\mathrm{c}\) with lapse time and the corresponding apparent depths is also studied. Increase in \(Q_\mathrm{c}\) values with the lapse time suggests that the deeper part of the study region is less heterogeneous than the shallower part. The observed values of \(Q_0\) (\(Q_\mathrm{c}\) at 1 Hz) and frequency parameter n indicate that the medium beneath the study area is highly heterogeneous and tectonically very active. A regionalization of the estimated \(Q_0\) is carried out, and a contour map is prepared for the whole region. Some segments of Lesser Himalaya and Sub-Himalaya exhibit very low \(Q_0\) , while the whole Tethyan Himalaya and some parts of Greater Himalaya are characterized by low \(Q_0\) values. Our results are comparable with those obtained from tectonically active regions in the world.  相似文献   
92.
This paper presents laboratory experiments and numerical simulations of effects of submerged obstacles on tsunami-like solitary wave and its run-up. This study was carried out for the breaking and non-breaking solitary waves on 1:19.85 uniform slope which contains a submerged obstacle. New laboratory experiments are performed to describe the mitigation of tsunami amplitude and run-up under the effect of submerged obstacles. We are based on experimental results obtained to validate the numerical model. The numerical modeling using COULWAVE aims essentially to show the effect of the obstacle on the shape of solitary wave and the limit of this effect. Using a multiple nonlinear regression, we have determined a model to estimate height of run-up according to the amplitude of the wave and the obstacle peak depth.  相似文献   
93.
The Chilas Complex is a major lower crustal component of the Cretaceous Kohistan island arc and one of the largest exposed slices of arc magma chamber in the world. Covering more than 8000 km2, it reaches a current tectonic width of around 40 km. It was emplaced at 85 Ma during rifting of the arc soon after the collision of the arc with the Karakoram plate. Over 85% of the Complex comprises homogeneous, olivine‐free gabbronorite and subordinate orthopyroxene–quartz diorite association (MGNA), which contains bodies of up to 30 km2 of ultramafic–mafic–anorthositic association (UMAA) rocks. Primary cumulate textures, igneous layering, and sedimentary structures are well preserved in layered parts of the UMAA in spite of pervasive granulite facies metamorphism. Mineral analyses show that the UMAA is characterized by more magnesian and more aluminous pyroxene and more calcic plagioclase than those in the MGNA. High modal abundances of orthopyroxene, magnetite and ilmenite (in MGNA), general Mg–Fe–Al spatial variations, and an MFA plot of whole‐rock analyses suggest a calc‐alkaline origin for the Complex. Projection of the pyroxene compositions on the Wo–En–Fs face is akin to those of pyroxenes from island arcs gabbros. The presence of highly calcic plagioclase and hornblende in UMAA is indicative of hydrous parental arc magma. The complex may be a product of two‐stage partial melting of a rising mantle diaper. The MGNA rocks represent the earlier phase melting, whereas the UMAA magma resulted from the melting of the same source depleted by the extraction of the earlier melt phase. Some of the massive peridotites in the UMAA may either be cumulates or represent metasomatized and remobilized upper mantle. The Chilas Complex shows similarities with many other (supra)subduction‐related mafic–ultramafic complexes worldwide.  相似文献   
94.
95.
Groundwater samples from six wells and various species of plants from soils developed on ophiolites were collected from an arid area (AlKhod area, Oman) and analyzed for trace elements including rare earth elements (REEs). The distribution patterns of REEs in plants indicated an enrichment in middle REEs (MREEs?=?Sm to Dy) and heavy REEs (HREEs?=?Ho to Lu), when they are normalized to the REE composition of the Post Archean Australian Shale (PAAS), with a significant negative anomaly in Ce and a positive anomaly in Eu. Compared to Oman ophiolites, the REEs in different species of plants are depleted in Ce and enriched in MREEs and slightly enriched in light REE (LREE?=?from La to Nd). Relative to PAAS, the distribution of REEs in groundwaters revealed similar patterns to the REE distribution in plants. The distribution patterns of REEs in plants relative to those in waters are nearly flat. These patterns suggest that the transfer of REEs from soil solutions to the groundwaters in Oman occurs without any significant fractionation.  相似文献   
96.
ABSTRACT

Series of observed flood intervals, defined as the time intervals between successive flood peaks over a threshold, were extracted directly from 11 approximately 100-year streamflow datasets from Queensland, Australia. A range of discharge thresholds were analysed that correspond to return periods of approximately 3.7 months to 6.3 years. Flood interval histograms at South East Queensland gauges were consistently unimodal whereas those of the North and Central Queensland sites were often multimodal. The exponential probability distribution (pd) is often used to describe interval exceedence probabilities, but fitting utilizing the Anderson-Darling statistic found little evidence that it is the most suitable. The fatigue life pd dominated sub-year return periods (<1 year), often transitioning to a log Pearson 3 pd at above-year return periods. Fatigue life pd is used in analysis of the lifetime to structural failure when a threshold is exceeded, and this paper demonstrates its relevance also to the elapsed time between above-threshold floods. At most sites, the interval medians were substantially less than the means for sub-year return periods. Statistically the median is a better measure of the central tendency of skewed distributions but the mean is generally used in practice to describe the classical concept of flood return period.
Editor Z.W. Kundzewicz; Associate editor I. Nalbantis  相似文献   
97.
The Son-Narmada-Tapti lineament and its surroundings of Central India (CI) is the second most important tectonic regime following the converging margin along Himalayas-Myanmar-Andaman of the Indian sub-continent, which attracted several geoscientists to assess its seismic hazard potential. Our study area, a part of CI, is bounded between latitudes 18°–26°N and longitudes 73°–83°E, representing a stable part of Peninsular India. Past damaging moderate magnitude earthquakes as well as continuing microseismicity in the area provided enough data for seismological study. Our estimates based on regional Gutenberg–Richter relationship showed lower b values (i.e., between 0.68 and 0.76) from the average for the study area. The Probabilistic Seismic Hazard Analysis carried out over the area with a radius of ~300 km encircling Bhopal yielded a conspicuous relationship between earthquake return period (T) and peak ground acceleration (PGA). Analyses of T and PGA shows that PGA value at bedrock varies from 0.08 to 0.15 g for 10 % (T = 475 years) and 2 % (T = 2,475 years) probabilities exceeding 50 years, respectively. We establish the empirical relationships $ {\text{ZPA}}_{(T = 475)} = 0.1146\;[V_{\text{s}} (30)]^{ - 0.2924}, $ and $ {\text{ZPA}}_{(T = 2475)} = 0.2053\;[V_{\text{s}} (30)]^{ - 0.2426} $ between zero period acceleration (ZPA) and shear wave velocity up to a depth of 30 m [V s (30)] for the two different return periods. These demonstrate that the ZPA values decrease with increasing shear wave velocity, suggesting a diagnostic indicator for designing the structures at a specific site of interest. The predictive designed response spectra generated at a site for periods up to 4.0 s at 10 and 2 % probability of exceedance of ground motion for 50 years can be used for designing duration dependent structures of variable vertical dimension. We infer that this concept of assimilating uniform hazard response spectra and predictive design at 10 and 2 % probability of exceedance in 50 years at 5 % damping at bedrocks of different categories may offer potential inputs for designing earthquake resistant structures of variable dimensions for the CI region under the National Earthquake Hazard Reduction Program for India.  相似文献   
98.
Abstract

The Coupled Routing and Excess STorage model (CREST, jointly developed by the University of Oklahoma and NASA SERVIR) is a distributed hydrological model developed to simulate the spatial and temporal variation of land surface, and subsurface water fluxes and storages by cell-to-cell simulation. CREST's distinguishing characteristics include: (1) distributed rainfall–runoff generation and cell-to-cell routing; (2) coupled runoff generation and routing via three feedback mechanisms; and (3) representation of sub-grid cell variability of soil moisture storage capacity and sub-grid cell routing (via linear reservoirs). The coupling between the runoff generation and routing mechanisms allows detailed and realistic treatment of hydrological variables such as soil moisture. Furthermore, the representation of soil moisture variability and routing processes at the sub-grid scale enables the CREST model to be readily scalable to multi-scale modelling research. This paper presents the model development and demonstrates its applicability for a case study in the Nzoia basin located in Lake Victoria, Africa.

Citation Wang, J., Yang, H., Li, L., Gourley, J. J., Sadiq, I. K., Yilmaz, K. K., Adler, R. F., Policelli, F. S., Habib, S., Irwn, D., Limaye, A. S., Korme, T. &; Okello, L. (2011) The coupled routing and excess storage (CREST) distributed hydrological model. Hydrol. Sci. J. 56(1), 84–98.  相似文献   
99.
The Chaman left‐lateral strike‐slip fault bounds the rigid Indian plate boundary at the western end of the Himalayan‐Tibetan orogen and is marked by contrasting topographic relief. Deformed landforms along the fault provide an excellent record for understanding this actively evolving intra‐continental strike‐slip fault. The geomorphic response of an active transpessional stretch of the Chaman fault was studied using digital elevation model (DEM) data integrated with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Visible and Near Infrared/Short Wave Infrared (VNIR/SWIR) and images from GeoEye‐1. Geologic and geomorphic mapping helped in reconstructing the Late Quaternary landscape history of this transpessional strand of the Chaman strike‐slip fault and the associated Spinatizha thrust fault in western Pakistan. Topographic analysis of a part of the transpression (the thrust bounded Roghani ridge) revealed northward growth of the Spinatizha fault with the presence of three water gaps and two corresponding wind gaps. Geomorphic indices including stream length‐gradient index, mountain front sinuosity, valley floor width to valley height ratios, and entrenchment of recent alluvial fan deposits were used to define the lateral growth and direction of propagation of the Spinatizha fault. Left‐lateral displacement along Chaman fault and uplift along the Spinatizha fault was defined using topographic analysis of the Roghani ridge and geomorphic mapping of an impressive alluvial fan, the Bostankaul fan. The landforms and structures record slip partitioning along the Indian plate boundary, and account for the convergence resulting from the difference in the Chaman fault azimuth and orientation of the velocity vector of the Indian plate. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
100.
Groundwater is a major source of water supply for domestic and irrigation uses in semiarid, remote but rapidly developing Kilasaifullah district part of Zhob River Basin, located at Pakistan–Afghanistan Border. Zhob River is among few major rivers of perennial nature in Balochistan, which flows from WSW to ENE and falls in Gomal River, a tributary of Indus River. Keeping in view the important geopolitical position and rapid development of the region, this study is primarily focused on groundwater chemistry for contamination sources as well as agriculture development. Water samples from open and tube wells are analyzed and calculated for electrical conductivity (EC), total dissolved solids (TDS), turbidity, pH, K+, Na+, Ca2+, Mg2+, HCO, Cl?, NO, SO, PO, sodium percent (Na%), sodium adsorption ratio (SAR), Kelly's index (KI), and heavy metals (Fe, Cu, Cr, Zn, Pb, and Mn). On the basis of the chemical constituents two zones within the study area are identified and possible causes of the contaminants are pointed out. Two recharge areas were responsible for the different chemical results in groundwater, e.g., zone A was recharged from NNW saline geological formations (Nisai, Khojak, Multana, Bostan formations, and Muslim Bagh ophiolites), which are concentrated with high sodium and chloride. On the other hand Zone B was sourced from SSW from carbonate rich rocks (Alozai, Loralai, Parh formations, and Muslim Bagh ophiolites). The groundwater is classified as C2–S1, C3–S1, C3–S2, C4–S2 on the basis of EC and SAR values which indicate that most of the water of both zones can be used for irrigation safely except the samples plotted in C3–S2 and C4–S2 categories which could be dangerous for soil and crops. Groundwater samples are plotted in good to permissible limits with some samples excellent to good and few samples belong to doubtful category based on sodium percent. Groundwater of zone A is unsuitable for irrigation use due to higher values of KI (more than one) but water of zone B are good for irrigation based on KI. In general, water of both zones is suitable for irrigation but care should be taken during the selection of crops which are sensitive to alkalinity or sodium hazards particularly in zone A.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号