首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   16篇
  国内免费   1篇
测绘学   14篇
大气科学   10篇
地球物理   102篇
地质学   78篇
海洋学   22篇
天文学   31篇
自然地理   9篇
  2024年   1篇
  2022年   1篇
  2021年   3篇
  2020年   14篇
  2019年   9篇
  2018年   18篇
  2017年   10篇
  2016年   16篇
  2015年   10篇
  2014年   16篇
  2013年   15篇
  2012年   6篇
  2011年   19篇
  2010年   21篇
  2009年   22篇
  2008年   16篇
  2007年   16篇
  2006年   8篇
  2005年   11篇
  2004年   9篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1986年   1篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有266条查询结果,搜索用时 74 毫秒
241.
Clinoforms with a range of scales are essential elements of prograding continental margins. Different types of clinoforms develop during margin growth, depending on combined changes in relative sea level, sediment supply and oceanographic processes. In studies of continental margin stratigraphy, trajectories of clinoform ‘rollover’ points are often used as proxies for relative sea-level variation and as predictors of the character of deposits beyond the shelf-break. The analysis of clinoform dynamics and rollover trajectory often suffers from the low resolution of geophysical data, the small scale of outcrops with respect to the dimensions of clinoform packages and low chronostratigraphic resolution. Here, through high-resolution seismic reflection data and sediment cores, we show how compound clinoforms were the most common architectural style of margin progradation of the late Pleistocene lowstand in the Adriatic Sea. During compound clinoform development, the shoreline was located landward of the shelf-break. It comprised a wave-dominated delta to the west and a barrier and back-barrier depositional system in the central and eastern area. Storm-enhanced hyperpycnal flows were responsible for the deposition of a sandy lobe in the river mouth, whereas a heterolithic succession formed elsewhere on the shelf. The storm-enhanced hyperpycnal flows built an apron of sand on the slope that interrupted an otherwise homogeneous progradational mudbelt. Locally, the late lowstand compound clinoforms have a flat to falling shelf-break trajectory. However, the main phase of shelf-break bypass and basin deposition coincides with a younger steeply rising shelf-break trajectory. We interpret divergence from standard models, linking shelf-break trajectory to deep-sea sand deposition, as resulting from a great efficiency of oceanographic processes in reworking sediment in the shelf, and from a high sediment supply. The slope foresets had a large progradational attitude during the late lowstand sea-level rise, showing that oceanographic processes can inhibit coastal systems to reach the shelf-edge. In general, our study suggests that where the shoreline does not coincide with the shelf-break, trajectory analysis can lead to inaccurate reconstruction of the depositional history of a margin.  相似文献   
242.
243.
The type and kinetics of metamorphic CO2-producing processes in metacarbonate rocks is of importance to understand the nature and magnitude of orogenic CO2 cycle. This paper focuses on CO2 production by garnet-forming reactions occurring in calc-silicate rocks. Phase equilibria in the CaO–FeO–Al2O3–SiO2–CO2–H2O (CFAS–CO2–H2O) system are investigated using PT phase diagrams at fixed fluid composition, isobaric TX(CO2) phase diagram sections and phase diagram projections in which fluid composition is unconstrained. The relevance of the CFAS–CO2–H2O garnet-bearing equilibria during metamorphic evolution of calc-silicate rocks is discussed in the light of the observed microstructures and measured mineral compositions in two representative samples of calc-silicate rocks from eastern Nepal Himalaya. The results of this study demonstrate that calc-silicate rocks may act as a significant CO2 source during prograde heating and/or early decompression. However, if the system remains closed, fluid–rock interactions may induce hydration of the calc-silicate assemblages and the in situ precipitation of graphite. The interplay between these two contrasting processes (production of CO2-rich fluids vs. carbon sequestration through graphite precipitation) must be considered when dealing with a global estimate of the role exerted by decarbonation processes on the orogenic CO2 cycle.  相似文献   
244.
A sedimentary sequence from the Mediterranean coastal basin of Lago di Massaciuccoli (Tuscany, Italy) was analyzed for diatoms, covering two periods over the past ca. 7,000 years. The site was selected because it is situated in a sensitive position at the limit between Mediterranean and Central European climates and biomes. Our focus is on the impact of accelerated human activity during the recent past (water uptake in the catchment, sand extraction, wastewater discharge) and on a phase of evident change between 6,600 and 5,400 cal. BP. The diatom record suggests fresh-water conditions and rather high lake levels until ca. 6,000 years ago. The subsequent shift towards brackish conditions peaked at around 5,500 cal. BP. We relate this shift to a pervasive change towards a drier climate that has been observed elsewhere in the Mediterranean and Northern African regions, and stands in contrast to the shift towards a cooler and more humid climate in the nearby Alps (200–350 km distant) and in central Europe. Pollen and charcoal records from a previous study on the same sedimentary sequence were used to gain additional insights about the causes of the changes in the diatom assemblages and apply numerical methods to search for common trends and correlations.  相似文献   
245.
One of the most complex hydrogeological problems in the design and maintenance of drainage systems in abandoned mining sites is quantifying the maximum water infiltration and, therefore, the amount that is potentially drainable by the tunnels. This problem is compounded when water-inflow data are limited or lacking. The aim of the study was to present a single but reliable model for making this evaluation; this model was applied to the case history of the abandoned Cogne iron ore mining complex (Western Alps, Aosta Valley Region, NW Italy). The study focused on quantifying the amount of water infiltrating into the mine drifts, using a water balance model in a Geographic Information System (GIS) environment. In the model, five different infiltration scenarios were calculated, including a detailed analysis of rainfall data, snow density and thickness (Snow Water Equivalent calculation), and melting periods. The maximum water discharge that could affect the mine tunnels was, therefore, determined under several scenarios of normal precipitation conditions and during heavy rainfall, including the case of the Cogne valley flood in October 2000, used as a reference for the limit conditions. Taking into account the various approximations considered, the results can be considered a good indication of the magnitude of the total amount of water that should be drained out through abandoned mine drifts and in the drainage network during implementation of final closure of the mine.  相似文献   
246.
In this study, we investigate the surface flow time of rise in response to rainfall and snowmelt events at different spatial scales and the main sources originating channel runoff and spring water in a steep nested headwater catchment (Rio Vauz, Italian Dolomites), characterized by a marked elevation gradient. We monitored precipitation at different elevations and measured water stage/streamflow at the outlet of two rocky subcatchments of the same size, representative of the upper part of the catchment dominated by outcropping bedrock, at the outlet of a soil‐mantled and vegetated subcatchment of similar size but different morphology, and at the outlet of the main catchment. Hydrometric data are coupled with stable isotopes and electrical conductivity sampled from different water sources during five years, and used as tracers in end‐member mixing analysis, application of two component mixing models and analysis of the slope of the dual‐isotope regression line. Results reveal that times of rise are slightly shorter for the two rocky subcatchments, particularly for snowmelt and mixed rainfall/snowmelt events, compared to the soil‐mantled catchment and the entire Rio Vauz Catchment. The highly‐variable tracer signature of the different water sources reflects the geomorphological and geological complexity of the study area. The principal end‐members for channel runoff and spring water are identified in rainfall and snowmelt, which are the dominant water sources in the rocky upper part of the study catchment, and soil water and shallow groundwater, which play a relevant role in originating baseflow and spring water in the soil‐mantled and vegetated lower part of the catchment. Particularly, snowmelt contributes up to 64 ± 8% to spring water in the concave upper parts of the catchment and up to 62 ± 11% to channel runoff in the lower part of the catchment. These results offer new experimental evidences on how Dolomitic catchments capture and store rain water and meltwater, releasing it through a complex network of surface and subsurface flow pathways, and allow for the construction of a preliminary conceptual model on water transmission in snowmelt‐dominated catchments featuring marked elevation gradients.  相似文献   
247.
Observations using a three-dimensional scanning coherent Doppler lidar in an urban area revealed the characteristics of streaky structures above a rough, inhomogeneous surface for a high-Reynolds-number flow. The study focused on two points: (1) the frequency of occurrence and conditions required for the presence of streaky structures, and (2) the universal scaling of the spacing of streaky structures (\(\lambda )\). The horizontal snapshots of the radial velocity were visually classified into six groups: Streak, Mixed, Fishnet, No streak, Front, and Others. The Streak category accounted for more than 50% of all possible flows and occurred when the horizontal wind speed was large and the atmospheric stratification was near-neutral. The spacing (\(\lambda )\) was estimated from the power spectral density of the streamwise velocity fluctuations along the spanwise direction. The spacing \(\lambda \) decreased with an increase in the local velocity gradient. Furthermore, it was revealed that the local velocity gradient normalized by the friction velocity and the boundary-layer height (\(z_i )\) comprehensively predicts \(\lambda /z_i \) under various experimental and environmental conditions, in terms of the scale of motion (i.e., indoor and outdoor scales), thermal stratification (i.e., from weakly unstable to stable stratification), and surface roughness (i.e., from flat to very rough surfaces).  相似文献   
248.
The simultaneous operation of a three-axis Doppler sodar system in the centralurban area of Rome and two similar systems in the suburban area, forming atriangle about 20 km on each side, provided evidence of solitary-type wavesin the urban boundary layer. Three events, each lasting from a few minutes toabout 30 min, and ranging in depth from the minimum range of the sodar (39 m) to over 500 m, are reported here. Two events were recognizable onall three sodar records while the third event could be observed at the urbanlocation only. Time-height acoustic echo intensity records showed no-echoregions within the wave indicating transport of trapped recirculating air.This is typical of large amplitude solitary waves. The time series plots ofsodar-derived vertical wind velocity revealed a maximum peak-to-peakvariation of about 5 m s-1 during periods of wave-associated disturbance.The vertical velocity is found to increase with height up to the top of the closedcirculation within the wave and decreases further above. The normalisedamplitude-wavelength relationship for the two events indicates that theobserved waves are close to a strongly nonlinear regime.  相似文献   
249.
In the study of rock avalanche phenomena, numerical modelling makes use of back analyses of the rock avalanche propagation for calibration of the modelling assumptions and parameters. The back analyses require knowledge of the run-out area boundaries and the thickness distribution of the deposit. Geophysical methods can be applied to retrieve the thickness distribution, but, due to strong heterogeneities and logistic problems they are seldom applied. The aim of this work is to assess the potential of integrated geophysical methods to recognise and characterise a deposit created by two rock avalanches which occurred in the Sandalp valley (Switzerland) in 1996. The topography of the site before and after the rock avalanche is known and can be used as a benchmark. Resistivity tomography, seismic P-wave tomography, and active and passive surface wave analysis have been applied on several profiles deployed both on the rock avalanche deposit and in the surrounding area. Innovative approaches for surface wave analysis based on laterally constrained inversion and multimodal inversion have been applied to the data. A comparison of the results of the geophysical investigations with the topographic benchmark has shown the capability of the geophysical methods to locate the bottom of the deposit in the areas where the contrast with the host sediments properties is significant. In these areas, the deposit has higher resistivities and lower seismic velocities than the underlying materials. In the areas where the deposit is thicker and richer in fine-grained materials the geophysical parameters are not able to discriminate between the rock avalanche deposit and the underlying sediments. As a secondary task, the geophysical methods also allowed the bedrock pattern to be outlined.  相似文献   
250.
Fluvial bank erosion rates are often quantified by assuming that the erosion rate is a function of the excess (above a critical threshold) boundary shear stress applied by the flow. Research has shown that the form roughness induced by natural topographic bank features, such as slumps, spurs and embayments, is the dominant component of the spatially‐averaged total shear stress, meaning that form roughness provides an important control on bank erosion rates. However, measuring the relative components of the total shear stress for a natural system is not straightforward. In this work we use the method of Kean and Smith to partition the form and skin drag components of river bank roughness using a time series (2005–2011) of high‐resolution topographic surveys of an eroding bank of the Cecina River in central Italy. This method approximates the form drag component of the roughness along a longitudinal bank profile as a series of user‐defined Gaussian curves. The extracted metrics are used in conjunction with an estimate of the outer region flow velocity to partition the form and skin drag components of the total boundary shear stress according to the Kean and Smith analytical solution. The relative magnitude of the form and skin shear stress at each survey date is analysed alongside DEMs of difference to reveal that intense episodes of erosion are followed by periods of quiescence. We show that this is due to the protection offered by increased form drag roughness following erosion. We conceptualise the dynamic feedbacks that exist between river discharge, bank erosion processes and bank form roughness, into a simple model of the self‐limiting nature of river bank erosion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号