首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   244篇
  免费   21篇
  国内免费   1篇
测绘学   14篇
大气科学   10篇
地球物理   102篇
地质学   78篇
海洋学   22篇
天文学   31篇
自然地理   9篇
  2024年   1篇
  2022年   1篇
  2021年   3篇
  2020年   14篇
  2019年   9篇
  2018年   18篇
  2017年   10篇
  2016年   16篇
  2015年   10篇
  2014年   16篇
  2013年   15篇
  2012年   6篇
  2011年   19篇
  2010年   21篇
  2009年   22篇
  2008年   16篇
  2007年   16篇
  2006年   8篇
  2005年   11篇
  2004年   9篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1986年   1篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有266条查询结果,搜索用时 15 毫秒
181.
182.
Volcanic eruptions may create a wide range of risks in inhabited areas and, as a consequence, major economic damage to the surrounding territory. An example of volcanic hazard was given between 1998 and 2001 by Mt. Etna volcano, in Italy, with its frequent paroxysmal explosive activity that caused more than a hundred fire-fountain episodes. In the period January–June 2000, in particular, 64 lava fountains took place at the Southeast Crater. During the most intense explosive phase of each episode, a sustained column often formed, reaching up to 6 km above the eruptive vent. Then, the column started to expand laterally causing more or less copious tephra fallout on the slopes of Etna; ash and lapilli, therefore, constituted a serious danger for vehicular and air traffic. A software and hardware warning system was developed to mitigate the volcanic hazard indicating the areas affected by potential ash and lapilli fallout. The alert system was mainly based on the good correspondence between the pattern of volcanic tremor amplitude and the evolution of explosive activity. When a fixed tremor threshold was exceeded, a semiautomatic process started to send faxes to Civil Defence and Municipalities directly affected by tephra fallout, together with information on wind directions from the Meteorological Office. The application of this methodology, during the last 14 eruptive episodes in 2000 and the 14 events occurred in 2001, demonstrated the good correspondence between the forecasts on the areas affected by tephra fallout and the effective tephra distribution on land. Despite the integrity of the performance provided by the alert system, small discrepancies occurred in the technical procedure of alerting, for which possible solutions have been discussed. The improvement of this type of system, could become basic for the Etnean region and be proposed for similar volcanic areas throughout the world.  相似文献   
183.
Microgravity observations at Mt. Etna have been routinely performed as both discrete (since 1986) and continuous (since 1998) measurements. In addition to describing the methodology for acquiring and reducing gravity data from Mt. Etna, this paper provides a collection of case studies aimed at demonstrating the potential of microgravity to investigate the plumbing system of an active volcano and detect forerunners to paroxysmal volcanic events. For discrete gravity measurements, results from 1994–1996 and 2001 are reported. During the first period, the observed gravity changes are interpreted within the framework of the Strombolian activity which occurred from the summit craters. Gravity changes observed during the first nine months of 2001 are directly related to subsurface mass redistributions which preceded, accompanied and followed the July-August 2001 flank eruption of Mt. Etna. Two continuous gravity records are discussed: a 16-month (October 1998 to February 2000) sequence and a 48-hour (26–28 October, 2002) sequence, both from a station within a few kilometers of the volcano's summit. The 16-month record may be the longest continuous gravity sequence ever acquired at a station very close to the summit zone of an active volcano. By cross analyzing it with contemporaneous discrete observations along a summit profile of stations, both the geometry of a buried source and its time evolution can be investigated. The shorter continuous sequence encompasses the onset of an eruption from a location only 1.5 km from the gravity station. This gravity record is useful for establishing constraints on the characteristics of the intrusive mechanism leading to the eruption. In particular, the observed gravity anomaly indicates that the magma intrusion occurred “passively” within a fracture system opened by external forces.  相似文献   
184.
The statistical distribution of the daily Snow Water Equivalent (SWE) is investigated for a network of gauging stations in the Alpine part of Lombardia region, in the central Italian Alps. An event based data analysis is carried out using a 14 year long data set dating back to 1989. SWE is estimated when the new snow depth is greater than 6 cm. The SWE sample average in time is shown to be related to physiographic attributes of the gauging area, thus not being homogeneous in space. The values of SWE scaled by their average, or index value, instead show well approximated homogeneity of the second order moment, or coefficient of variation, in space. This suggests the use of a regional approach for frequency estimation of SWE. The frequency of occurrence of the normalized values of SWE is evaluated and tentatively accommodated by four probability distributions, often adopted in statistical modeling of hydrological variables. The Lognormal distribution shows the best performance. Single site distribution fitting is then carried out using the regional distribution, providing satisfactory results.  相似文献   
185.
186.
187.
Chemical diffusion coefficients of La, Nd, Eu, Gd, and Yb in natural enstatite have been measured at 850-1250 °C and 1 atm. Anhydrous diffusion experiments were run in Pt capsules in air, or in sealed silica glass capsules under an iron-wüstite (IW) solid buffer. The sources of diffusant were pre-reacted mixtures of synthetic enstatite powder and microcrystalline rare-earth aluminate garnet. Rutherford Backscattering Spectrometry (RBS) was used to measure diffusion profiles. For Gd diffusion in air over the temperature range 1000-1250 °C, the following Arrhenius relation is found for diffusion normal to (210):
  相似文献   
188.
Probabilistic characterizations of possible future eruptive scenarios at Vesuvius volcano are elaborated and organized within a risk-based framework. In the EXPLORIS project, a wide variety of topics relating to this basic problem have been pursued: updates of historical data, reinterpretation of previous geological field data and the collection of new fieldwork results, the development of novel numerical modelling codes and of risk assessment techniques have all been completed. To achieve coherence, many diverse strands of evidence had to be unified within a formalised structure, and linked together by expert knowledge. For this purpose, a Vesuvius ‘Event Tree’ (ET) was created to summarise in a numerical-graphical form, at different levels of detail, all the relative likelihoods relating to the genesis and style of eruption, development and nature of volcanic hazards, and the probabilities of occurrence of different volcanic risks in the next eruption crisis. The Event Tree formulation provides a logical pathway connecting generic probabilistic hazard assessment to quantitative risk evaluation. In order to achieve a complete parameterization for this all-inclusive approach, exhaustive hazard and risk models were needed, quantified with comprehensive uncertainty distributions for all factors involved, rather than simple ‘best-estimate’ or nominal values. Thus, a structured expert elicitation procedure was implemented to complement more traditional data analysis and interpretative approaches. The structure of the Vesuvius Event Tree is presented, and some of the data analysis findings and elicitation outcomes that have provided initial indicative probability distributions to be associated with each of its branches are summarized. The Event Tree extends from initiating volcanic eruption events and hazards right through to human impact and infrastructure consequences, with the complete tree and its parameterisation forming a quantitative synoptic framework for comprehensive hazard evaluation and mapping of risk impacts. The organization of the Event Tree allows easy updating, as and when new information becomes available.  相似文献   
189.
A new proposal for the classification of Somma-Vesuvius (SV) explosive activity is presented, based on a critical revision of a large set of published and unpublished stratigraphic, compositional, and physical volcanology data on the products of the past 20,000 years of activity. The new database is used to discuss the general behaviour of the volcano in terms of frequency, magnitude and intensity of the events, as well as of the length of the repose time which preceded each eruption. Several different types of eruption are recognized, each characterised by specific physical eruptive parameters: plinian, subplinian (further subdivided in subplinian I and subplinian II), violent strombolian, ash emission events. For each eruption type, a complex scenario is described, with phases of different style, duration, magnitude and intensity occurring during the course of the eruption itself. The name given to each eruption type is derived from the style of the most representative part of the eruption (in terms of duration or volume).  相似文献   
190.
The precise computation of the vertical gravitational attraction of the topographic masses (terrain correction) is still being studied both for geodetic and geophysical applications. In fact, it is essential in high precision geoid estimation by means of the well-known remove-compute-restore technique, which is used to isolate the gravitational effects of anomalous masses in exploration geophysics. The terrain correction can be evaluated exploiting a Digital Terrain Model (DTM) in different ways, such as classical numerical integration, prisms, tesseroids, polyhedrons, and/or Fast Fourier Transform techniques. The increasing resolution of recently developed DTMs, the increasing number of observation points, and the increasing accuracy of gravity data represent, nowadays, major challenges for the terrain correction computation. Classical point mass approximation and prism based-algorithms are indeed too slow, while Fourier-based algorithms are usually too much approximate when compared to the required accuracy. In this work, we improve the Gravity Terrain Effects (GTE) algorithm, the innovative tool that exploits a combined prism-Fast Fourier Transform approach especially developed for airborne gravimetry, to compute the terrain correction on the surface of the DTM (i.e. corresponding to the ground stations and/or its vicinity). This required development of a proper adjustment of the algorithms implemented within the GTE software and also to define and implement a procedure to overcome the problems of the computation of the gravitational effects due to the actual slope of the terrain close to the stations. The latter problem is thoroughly discussed and solved by testing different solutions like concentric cylindrical rings, triangulated polyhedrons, or ultra-high resolution squared prisms. Finally, numerical tests to prove the temporal efficiency and the computational performances of the improved GTE software to compute terrain correction for ground stations are also presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号