首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2694篇
  免费   125篇
  国内免费   33篇
测绘学   112篇
大气科学   229篇
地球物理   611篇
地质学   994篇
海洋学   227篇
天文学   404篇
综合类   14篇
自然地理   261篇
  2023年   15篇
  2022年   23篇
  2021年   66篇
  2020年   89篇
  2019年   79篇
  2018年   90篇
  2017年   108篇
  2016年   130篇
  2015年   94篇
  2014年   116篇
  2013年   165篇
  2012年   127篇
  2011年   174篇
  2010年   149篇
  2009年   153篇
  2008年   136篇
  2007年   99篇
  2006年   95篇
  2005年   97篇
  2004年   82篇
  2003年   80篇
  2002年   66篇
  2001年   51篇
  2000年   45篇
  1999年   33篇
  1998年   27篇
  1997年   32篇
  1996年   30篇
  1995年   28篇
  1994年   14篇
  1993年   16篇
  1992年   22篇
  1991年   18篇
  1990年   22篇
  1989年   12篇
  1988年   15篇
  1987年   19篇
  1986年   8篇
  1985年   21篇
  1984年   26篇
  1983年   18篇
  1982年   19篇
  1981年   22篇
  1980年   14篇
  1979年   8篇
  1978年   12篇
  1977年   13篇
  1976年   10篇
  1975年   14篇
  1974年   16篇
排序方式: 共有2852条查询结果,搜索用时 11 毫秒
41.
Lunar meteorite Northwest Africa (NWA) 5744 is a granulitic breccia with an anorthositic troctolite composition that may represent a distinct crustal lithology not previously described. This meteorite is the namesake and first‐discovered stone of its pairing group. Bulk rock major element abundances show the greatest affinity to Mg‐suite rocks, yet trace element abundances are more consistent with those of ferroan anorthosites. The relatively low abundances of incompatible trace elements (including K, P, Th, U, and rare earth elements) in NWA 5744 could indicate derivation from a highlands crustal lithology or mixture of lithologies that are distinct from the Procellarum KREEP terrane on the lunar nearside. Impact‐related thermal and shock metamorphism of NWA 5744 was intense enough to recrystallize mafic minerals in the matrix, but not intense enough to chemically equilibrate the constituent minerals. Thus, we infer that NWA 5744 was likely metamorphosed near the lunar surface, either as a lithic component within an impact melt sheet or from impact‐induced shock.  相似文献   
42.
The problem of designing low-energy transfers between the Earth and the Moon has attracted recently a major interest from the scientific community. In this paper, an indirect optimal control approach is used to determine minimum-fuel low-thrust transfers between a low Earth orbit and a Lunar orbit in the Sun–Earth–Moon Bicircular Restricted Four-Body Problem. First, the optimal control problem is formulated and its necessary optimality conditions are derived from Pontryagin’s Maximum Principle. Then, two different solution methods are proposed to overcome the numerical difficulties arising from the huge sensitivity of the problem’s state and costate equations. The first one consists in the use of continuation techniques. The second one is based on a massive exploration of the set of unknown variables appearing in the optimality conditions. The dimension of the search space is reduced by considering adapted variables leading to a reduction of the computational time. The trajectories found are classified in several families according to their shape, transfer duration and fuel expenditure. Finally, an analysis based on the dynamical structure provided by the invariant manifolds of the two underlying Circular Restricted Three-Body Problems, Earth–Moon and Sun–Earth is presented leading to a physical interpretation of the different families of trajectories.  相似文献   
43.
Over one thousand objects have so far been discovered orbiting beyond Neptune. These trans-Neptunian objects (TNOs) represent the primitive remnants of the planetesimal disk from which the planets formed and are perhaps analogous to the unseen dust parent-bodies in debris disks observed around other main-sequence stars. The dynamical and physical properties of these bodies provide unique and important constraints on formation and evolution models of the Solar System. While the dynamical architecture in this region (also known as the Kuiper Belt) is becoming relatively clear, the physical properties of the objects are still largely unexplored. In particular, fundamental parameters such as size, albedo, density and thermal properties are difficult to measure. Measurements of thermal emission, which peaks at far-IR wavelengths, offer the best means available to determine the physical properties. While Spitzer has provided some results, notably revealing a large albedo diversity in this population, the increased sensitivity of Herschel and its superior wavelength coverage should permit profound advances in the field. Within our accepted project we propose to perform radiometric measurements of 139 objects, including 25 known multiple systems. When combined with measurements of the dust population beyond Neptune (e.g. from the New Horizons mission to Pluto), our results will provide a benchmark for understanding the Solar debris disk, and extra-solar ones as well.  相似文献   
44.
Abstract— We report new 39Ar‐40Ar measurements on 15 plagioclase, pyroxene, and/or whole rock samples of 8 Martian shergottites. All age spectra suggest ages older than the meteorite formation ages, as defined by Sm‐Nd and Rb‐Sr isochrons. Employing isochron plots, only Los Angeles plagioclase and possibly Northwest Africa (NWA) 3171 plagioclase give ages in agreement with their formation ages. Isochrons for all shergottite samples reveal the presence of trapped Martian 40Ar (40Arxs), which exists in variable amounts in different lattice locations. Some 40Arxs is uniformly distributed throughout the lattice, resulting in a positive isochron intercept, and other 40Arxs occurs in association with K‐bearing minerals and increases the isochron slope. These samples demonstrate situations where linear Ar isochrons give false ages that are too old. After subtracting 40Ar*that would accumulate by 40K decay since meteorite formation and small amounts of terrestrial 40Ar, all young age samples give similar 40Arxs concentrations of ?1–2 × 10?6cm3/g, but a variation in K content by a factor of ?80. Previously reported NASA Johnson Space Center data for Zagami, Shergotty, Yamato (Y‐) 000097, Y‐793605, and Queen Alexandra Range (QUE) 94201 shergottites show similar concentrations of 40Arxs to the new meteorite data reported here. Similar 40Arxs in different minerals and meteorites cannot be explained as arising from Martian atmosphere carried in strongly shocked phases such as melt veins. We invoke the explanation given by Bogard and Park (2008) for Zagami, that this 40Arxs in shergottites was acquired from the magma. Similarity in 40Arxs among shergottites may reveal common magma sources and/or similar magma generation and emplacement processes.  相似文献   
45.
Although of different age, the undeformed Cretaceous Iberia/Newfoundland margins and the relics of the Jurassic Briançonnais/Adriatic margins preserved in the Alps document a similar spatial and temporal evolution of rifting suggesting that the evolution of both pairs of margins was controlled by the same processes. Rifting appears to depend strongly on the thermal history of the lithosphere, which controls the rheology and consequently also the structural evolution of the margin. The tectonic evolution of non-volcanic margins appears to be distinctly different from that of volcanic ones.  相似文献   
46.
The stars that populate the solar neighbourhood were formed in stellar clusters. Through N -body simulations of these clusters, we measure the rate of close encounters between stars. By monitoring the interaction histories of each star, we investigate the singleton fraction in the solar neighbourhood. A singleton is a star which formed as a single star, has never experienced any close encounters with other stars or binaries, or undergone an exchange encounter with a binary. We find that, of the stars which formed as single stars, a significant fraction is not singletons once the clusters have dispersed. If some of these stars had planetary systems, with properties similar to those of the Solar System, the planets' orbits may have been perturbed by the effects of close encounters with other stars or the effects of a companion star within a binary. Such perturbations can lead to strong planet–planet interactions which eject several planets, leaving the remaining planets on eccentric orbits. Some of the single stars exchange into binaries. Most of these binaries are broken up via subsequent interactions within the cluster, but some remain intact beyond the lifetime of the cluster. The properties of these binaries are similar to those of the observed binary systems containing extrasolar planets. Thus, dynamical processes in young stellar clusters will alter significantly any population of Solar System-like planetary systems. In addition, beginning with a population of planetary systems exactly resembling the Solar System around single stars, dynamical encounters in young stellar clusters may produce at least some of the extrasolar planetary systems observed in the solar neighbourhood.  相似文献   
47.
The Canadian Meteor Orbit Radar is a multi-frequency backscatter radar which has been in routine operation since 1999, with an orbit measurement capability since 2002. In total, CMOR has measured over 2 million orbits of meteoroids with masses greater than 10 μg, while recording more than 18 million meteor echoes in total. We have applied a two stage comparative technique for identifying meteor streams in this dataset by making use of clustering in radiants and velocities without employing orbital element comparisons directly. From the large dataset of single station echoes, combined radiant activity maps have been constructed by binning and then stacking each years data per degree of solar longitude. Using the single-station mapping technique described in Jones and Jones (Mon Not R Astron Soc 367:1050–1056, 2006) we have identified probable streams from these single station observations. Additionally, using individual radiant and velocity data from the multi-station velocity determination routines, we have utilized a wavelet search algorithm in radiant and velocity space to construct a list of probable streams. These two lists were then compared and only streams detected by both techniques, on multiple frequencies and in multiple years were assigned stream status. From this analysis we have identified 45 annual minor and major streams with high reliability.  相似文献   
48.
Mutual Potential of Homogeneous Polyhedra   总被引:2,自引:0,他引:2  
The mutual gravitational potential between a pair of homogeneous polyhedra is expressed using an infinite series. The nested volume integrals are evaluated analytically and result in simple tensor expressions containing no special functions. However, complexity increases as O(6 n ), where n is the term degree. An alternate formulation due to Liebenthal is also presented.  相似文献   
49.
Abstract— Eucrite meteorites are igneous rocks that derived from a large asteroid, probably 4 Vesta. Past studies have shown that after most eucrites formed, they underwent metamorphism in temperatures up to ≥800°C. Much later, many were brecciated and heated by large impacts into the parent body surface. The less common basaltic, unbrecciated eucrites also formed near the surface but, presumably, escaped later brecciation, while the cumulate eucrites formed at depths where metamorphism may have persisted for a considerable period. To further understand the complex HED parent body thermal history, we determined new 39Ar‐40Ar ages for 9 eucrites classified as basaltic but unbrecciated, 6 eucrites classified as cumulate, and several basaltic‐brecciated eucrites. Precise Ar‐Ar ages of 2 cumulate eucrites (Moama and EET 87520) and 4 unbrecciated eucrites give a tight cluster at 4.48 ± 0.02 Gyr (not including any uncertainties in the flux monitor age). Ar‐Ar ages of 6 additional unbrecciated eucrites are consistent with this age within their relatively larger age uncertainties. By contrast, available literature data on Pb‐Pb isochron ages of 4 cumulate eucrites and 1 unbrecciated eucrite vary over 4.4–4.515 Gyr, and 147Sm‐143Nd isochron ages of 4 cumulate and 3 unbrecciated eucrites vary over 4.41–4.55 Gyr. Similar Ar‐Ar ages for cumulate and unbrecciated eucrites imply that cumulate eucrites do not have a younger formation age than basaltic eucrites, as was previously proposed. We suggest that these cumulate and unbrecciated eucrites resided at a depth where parent body temperatures were sufficiently high to cause the K‐Ar and some other chronometers to remain as open diffusion systems. From the strong clustering of Ar‐Ar ages at ?4.48 Gyr, we propose that these meteorites were excavated from depth in a single large impact event ?4.48 Gyr ago, which quickly cooled the samples and started the K‐Ar chronometer. A large (?460 km) crater postulated to exist on Vesta may be the source of these eucrites and of many smaller asteroids thought to be spectrally or physically associated with Vesta. Some Pb‐Pb and Sm‐Nd ages of cumulate and unbrecciated eucrites are consistent with the Ar‐Ar age of 4.48 Gyr, and the few older Pb‐Pb and Sm‐Nd ages may reflect an isotopic closure before the large cratering event. One cumulate eucrite gives an Ar‐Ar age of 4.25 Gyr; 3 additional cumulate eucrites give Ar‐Ar ages of 3.4–3.7 Gyr; and 2 unbrecciated eucrites give Ar‐Ar ages of ?3.55 Gyr. We attribute these younger ages to a later impact heating. Furthermore, the Ar‐Ar impact‐reset ages of several brecciated eucrites and eucritic clasts in howardites fall within the range of 3.5–4.1 Gyr. Among these, Piplia Kalan, the first eucrite to show evidence for extinct 26Al, was strongly impact heated ?3.5 Gyr ago. When these data are combined with eucrite Ar‐Ar ages in the literature, they confirm that several large impact heating events occurred on Vesta between ?4.1–3.4 Gyr ago. The onset of major impact heating may have occurred at similar times for both Vesta and the moon, but impact heating appears to have persisted for a somewhat later time on Vesta.  相似文献   
50.
Using a sample of almost 7000 strong Mg  ii absorbers with   W 0 > 1 Å  and  0.4 < z < 2.2  detected in the SDSS DR4 data set, we investigate the gravitational lensing and dust extinction effects they induce on background quasars. After carefully quantifying several selection biases, we isolate the reddening effects as a function of redshift and absorber rest equivalent width, W 0. We find the amount of dust to increase with cosmic time as  τ( z ) ∝ (1 + z )−1.1±0.4  , following the evolution of cosmic star density or integrated star formation rate. We measure the reddening effects over a factor of 30 in E ( B − V ) and we find that  τ∝ ( W 0)1.9±0.1  , providing us with an important scaling for theoretical modelling of metal absorbers. We also measure the dust-to-metal ratio and find it similar to that of the Milky Way. In contrast to previous studies, we do not detect any gravitational magnification by Mg  ii systems. We measure the upper limit  μ < 1.10  and discuss the origin of the discrepancy. Finally, we estimate the fraction of absorbers missed due to extinction effects and show that it rises from 1 to 50 per cent in the range  1 < W 0 < 6 Å  . We parametrize this effect and provide a correction for recovering the intrinsic  ∂ N /∂ W 0  distribution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号