首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27587篇
  免费   615篇
  国内免费   292篇
测绘学   724篇
大气科学   2141篇
地球物理   5948篇
地质学   9745篇
海洋学   2240篇
天文学   5744篇
综合类   52篇
自然地理   1900篇
  2020年   219篇
  2019年   198篇
  2018年   377篇
  2017年   367篇
  2016年   533篇
  2015年   386篇
  2014年   535篇
  2013年   1327篇
  2012年   612篇
  2011年   938篇
  2010年   772篇
  2009年   1047篇
  2008年   965篇
  2007年   884篇
  2006年   912篇
  2005年   804篇
  2004年   819篇
  2003年   781篇
  2002年   774篇
  2001年   634篇
  2000年   644篇
  1999年   599篇
  1998年   570篇
  1997年   590篇
  1996年   484篇
  1995年   485篇
  1994年   452篇
  1993年   424篇
  1992年   398篇
  1991年   344篇
  1990年   397篇
  1989年   305篇
  1988年   353篇
  1987年   391篇
  1986年   332篇
  1985年   500篇
  1984年   547篇
  1983年   545篇
  1982年   441篇
  1981年   439篇
  1980年   449篇
  1979年   389篇
  1978年   407篇
  1977年   359篇
  1976年   385篇
  1975年   352篇
  1974年   393篇
  1973年   367篇
  1972年   236篇
  1971年   189篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
211.
The current practice of slope stability analysis for a municipal solid waste (MSW) landfill usually overlooks the dependence of waste properties on the fill age or embedment depth. Changes in shear strength of MSW as a function of fill age were investigated by performing field and laboratory studies on the Suzhou landfill in China. The field study included sampling from five boreholes advanced to the bottom of the landfill, cone penetration tests and monitoring of pore fluid pressures. Twenty-six borehole samples representative of different fill ages (0 to 13 years) were used to perform drained triaxial compression tests. The field and laboratory study showed that the waste body in the landfill can be sub-divided into several strata corresponding to different ranges of fill age. Each of the waste strata has individual composition and shear strength characteristics. The triaxial test results showed that the MSW samples exhibited a strain-hardening and contractive behavior. As the fill age of the waste increased from 1.7 years to 11 years, the cohesion mobilized at a strain level of 10% was found to decrease from 23.3 kPa to 0 kPa, and the mobilized friction angle at the same strain level increasing from 9.9° to 26°. For a confinement stress level greater than 50 kPa, the shear strength of the recently-placed MSW seemed to be lower than that of the older MSW. This behavior was consistent with the cone penetration test results. The field measurement of pore pressures revealed a perched leachate mound above an intermediate cover of soils and a substantial leachate mound near the bottom of the landfill. The measurements of shear strength properties and pore pressures were utilized to assess the slope stability of the Suzhou landfill.  相似文献   
212.
Thirty-four silicate and oxide inclusions large enough for in situ WDS electron microprobe analysis were exposed by grinding/polishing of 19 diamonds from the Kelsey Lake Mine in the Colorado-Wyoming State Line Kimberlite district. Eighteen olivines, seven Cr-pyropes, four Mg-chromites, and one orthopyroxene in 15 stones belong to the peridotite (P) suite and three garnets and one omphacite in three stones belong to the eclogite (E) suite. The fact that this suite is dominated by the peridotite population is in stark contrast to the other diamond suites studied in the State Line district (Sloan, George Creek), which are overwhelmingly eclogitic. Kelsey Lake olivine inclusions are magnesian (17 of 18 grains in 9 stones are in the range Fo 92.7-93.1), typical of harzburgitic P-suite stones worldwide, but unlike the more Fe-rich (lherzolitic) Sloan olivine suite. Mg-chromites (wt% MgO = 12.8-13.8; wt% Cr2O3 = 61.4-66.6) are in the lower MgO range of diamond inclusion chromites worldwide. Seven harzburgitic Cr-pyropes in five stones have moderately low calcium contents (wt% CaO = 3.3-4.3) but are very Cr-rich (wt% Cr2O3 = 9.7-16.7). A few stones have been analyzed by SIMS for carbon isotope composition and nitrogen abundance. One peridotitic stone is apparently homogeneous in carbon isotope composition (δ13CPDB = −6.2‰) but with variable nitrogen abundance (1296-2550 ppm). Carbon isotopes in eclogitic stones range from “normal” for the upper mantle (δ13CPDB = −5.5‰) to somewhat low (δ13CPDB = −10.2‰), with little internal variation in individual stones (maximum difference is 3.6‰). Nitrogen contents (2-779 ppm) are lower than in the peridotitic stone, and are lower in cores than in rims. As, worldwide, harzburgite-suite diamonds have been shown to have formed in Archean time, we suggest that the Kelsey Lake diamond population was derived from a block of Archean lithosphere that, at the time of kimberlite eruption, existed beneath the Proterozoic Yavapai province. The mixed diamond inclusion populations from the State Line kimberlites appear to support models in which volumes of Wyoming Craton Archean mantle survive buried beneath Proterozoic continental crust. Such material may be mixed with eclogitic/lherzolitic regimes emplaced beneath or intermingled with the Archean rocks by Proterozoic subduction.  相似文献   
213.
Dissolved tetrafluoromethane (CF4) and sulfur hexafluoride (SF6) concentrations were measured in groundwater samples from the Eastern Morongo Basin (EMB) and Mojave River Basin (MRB) located in the southern Mojave Desert, California. Both CF4 and SF6 are supersaturated with respect to equilibrium with the preindustrial atmosphere at the recharge temperatures and elevations of the Mojave Desert. These observations provide the first in situ evidence for a flux of CF4 from the lithosphere. A gradual basin-wide enhancement in dissolved CF4 and SF6 concentrations with groundwater age is consistent with release of these gases during weathering of the surrounding granitic alluvium. Dissolved CF4 and SF6 concentrations in these groundwaters also contain a deeper crustal component associated with a lithospheric flux entering the EMB and MRB through the underlying basement. The crustal flux of CF4, but not of SF6, is enhanced in the vicinity of local active fault systems due to release of crustal fluids during episodic fracture events driven by local tectonic activity. When fluxes of CF4 and SF6 into Mojave Desert groundwaters are extrapolated to the global scale they are consistent, within large uncertainties, with the fluxes required to sustain the preindustrial atmospheric abundances of CF4 and SF6.  相似文献   
214.
A steady-state reaction-transport model is applied to sediments retrieved by gravity core from two stations (S10 and S13) in the Skagerrak to determine the main kinetic and thermodynamic controls on anaerobic oxidation of methane (AOM). The model considers an extended biomass-implicit reaction network for organic carbon degradation, which includes extracellular hydrolysis of macromolecular organic matter, fermentation, sulfate reduction, methanogenesis, AOM, acetogenesis and acetotrophy. Catabolic reaction rates are determined using a modified Monod rate expression that explicitly accounts for limitation by the in situ catabolic energy yields. The fraction of total sulfate reduction due to AOM in the sulfate-methane transition zone (SMTZ) at each site is calculated. The model provides an explanation for the methane tailing phenomenon which is observed here and in other marine sediments, whereby methane diffuses up from the SMTZ to the top of the core without being consumed. The tailing is due to bioenergetic limitation of AOM in the sulfate reduction zone, because the methane concentration is too low to engender favorable thermodynamic drive. AOM is also bioenergetically inhibited below the SMTZ at both sites because of high hydrogen concentrations (∼3-6 nM). The model results imply there is no straightforward relationship between pore water concentrations and the minimum catabolic energy needed to support life because of the highly coupled nature of the reaction network. Best model fits are obtained with a minimum energy for AOM of ∼11 kJ mol−1, which is within the range reported in the literature for anaerobic processes.  相似文献   
215.
The quantitative assay of clay minerals, soils, and sediments for Fe(II) and total Fe is fundamental to understanding biogeochemical cycles occurring therein. The commonly used ferrozine method was originally designed to assay extracted forms of Fe(II) from non-silicate aqueous systems. It is becoming, however, increasingly the method of choice to report the total reduced state of Fe in soils and sediments. Because Fe in soils and sediments commonly exists in the structural framework of silicates, extraction by HCl, as used in the ferrozine method, fails to dissolve all of the Fe. The phenanthroline (phen) method, on the other hand, was designed to assay silicate minerals for Fe(II) and total Fe and has been proven to be highly reliable. In the present study potential sources of error in the ferrozine method were evaluated by comparing its results to those obtained by the phen method. Both methods were used to analyze clay mineral and soil samples for Fe(II) and total Fe. Results revealed that the conventional ferrozine method under reports total Fe in samples containing Fe in silicates and gives erratic results for Fe(II). The sources of error in the ferrozine method are: (1) HCl fails to dissolve silicates and (2) if the analyte solution contains Fe3+, the analysis for Fe2+ will be photosensitive, and reported Fe(II) values will likely be greater than the actual amount in solution. Another difficulty with the ferrozine method is that it is tedious and much more labor intensive than the phen method. For these reasons, the phen method is preferred and recommended. Its procedure is simpler, takes less time, and avoids the errors found in the ferrozine method.  相似文献   
216.
We describe empirical results from a multi-disciplinary project that support modeling complex processes of land-use and land-cover change in exurban parts of Southeastern Michigan. Based on two different conceptual models, one describing the evolution of urban form as a consequence of residential preferences and the other describing land-cover changes in an exurban township as a consequence of residential preferences, local policies, and a diversity of development types, we describe a variety of empirical data collected to support the mechanisms that we encoded in computational agent-based models. We used multiple methods, including social surveys, remote sensing, and statistical analysis of spatial data, to collect data that could be used to validate the structure of our models, calibrate their specific parameters, and evaluate their output. The data were used to investigate this system in the context of several themes from complexity science, including have (a) macro-level patterns; (b) autonomous decision making entities (i.e., agents); (c) heterogeneity among those entities; (d) social and spatial interactions that operate across multiple scales and (e) nonlinear feedback mechanisms. The results point to the importance of collecting data on agents and their interactions when producing agent-based models, the general validity of our conceptual models, and some changes that we needed to make to these models following data analysis. The calibrated models have been and are being used to evaluate landscape dynamics and the effects of various policy interventions on urban land-cover patterns.  相似文献   
217.
218.
Pressures of Crystallization of Icelandic Magmas   总被引:1,自引:0,他引:1  
Iceland lies astride the Mid-Atlantic Ridge and was createdby seafloor spreading that began about 55 Ma. The crust is anomalouslythick (20–40 km), indicating higher melt productivityin the underlying mantle compared with normal ridge segmentsas a result of the presence of a mantle plume or upwelling centeredbeneath the northwestern edge of the Vatnajökull ice sheet.Seismic and volcanic activity is concentrated in 50 km wideneovolcanic or rift zones, which mark the subaerial Mid-AtlanticRidge, and in three flank zones. Geodetic and geophysical studiesprovide evidence for magma chambers located over a range ofdepths (1·5–21 km) in the crust, with shallow magmachambers beneath some volcanic centers (Katla, Grimsvötn,Eyjafjallajökull), and both shallow and deep chambers beneathothers (e.g. Krafla and Askja). We have compiled analyses ofbasalt glass with geochemical characteristics indicating crystallizationof ol–plag–cpx from 28 volcanic centers in the Western,Northern and Eastern rift zones as well as from the SouthernFlank Zone. Pressures of crystallization were calculated forthese glasses, and confirm that Icelandic magmas crystallizeover a wide range of pressures (0·001 to 1 GPa), equivalentto depths of 0–35 km. This range partly reflects crystallizationof melts en route to the surface, probably in dikes and conduits,after they leave intracrustal chambers. We find no evidencefor a shallow chamber beneath Katla, which probably indicatesthat the shallow chamber identified in other studies containssilica-rich magma rather than basalt. There is reasonably goodcorrelation between the depths of deep chambers (> 17 km)and geophysical estimates of Moho depth, indicating that magmaponds at the crust–mantle boundary. Shallow chambers (<7·1 km) are located in the upper crust, and probablyform at a level of neutral buoyancy. There are also discretechambers at intermediate depths (11 km beneath the rift zones),and there is strong evidence for cooling and crystallizing magmabodies or pockets throughout the middle and lower crust thatmight resemble a crystal mush. The results suggest that themiddle and lower crust is relatively hot and porous. It is suggestedthat crustal accretion occurs over a range of depths similarto those in recent models for accretionary processes at mid-oceanridges. The presence of multiple stacked chambers and hot, porouscrust suggests that magma evolution is complex and involvespolybaric crystallization, magma mixing, and assimilation. KEY WORDS: Iceland rift zones; cotectic crystallization; pressure; depth; magma chamber; volcanic glass  相似文献   
219.
Serpentine soils derived from the weathering of ultramafic rocks and their metamorphic derivatives (serpentinites) are chemically prohibitive for vegetative growth. Evaluating how serpentine vegetation is able to persist under these chemical conditions is difficult to ascertain due to the numerous factors (climate, relief, time, water availability, etc.) controlling and affecting plant growth. Here, the uptake, incorporation, and distribution of a wide variety of elements into the biomass of serpentine vegetation has been investigated relative to vegetation growing on an adjacent chert-derived soil. Soil pH, electrical conductivity, organic C, total N, soil extractable elements, total soil elemental compositions and plant digestions in conjunction with spider diagrams are utilized to determine the chemical relationships of these soil and plant systems. Plant available Mg and Ca in serpentine soils exceed values assessed in chert soils. Magnesium is nearly 3 times more abundant than Ca in the serpentine soils; however, the serpentine soils are not Ca deficient with Ca concentrations as high as 2235 mg kg−1. Calcium to Mg ratios (Ca:Mg) in both serpentine and chert vegetation are greater than one in both below and above ground tissues. Soil and plant chemistry analyses support that Ca is not a limiting factor for plant growth and that serpentine vegetation is actively moderating Mg uptake as well as tolerating elevated concentrations of bioavailable Mg. Additionally, results demonstrate that serpentine vegetation suppresses the uptake of Fe, Cr, Ni, Mn and Co into its biomass. The suppressed uptake of these metals mainly occurs in the plants’ roots as evident by the comparatively lower metal concentrations present in above ground tissues (twigs, leaves and shoots). This research supports earlier studies that have suggested that ion uptake discrimination and ion suppression in the roots are major mechanisms for serpentine vegetation to tolerate the chemistry of serpentine soils.  相似文献   
220.
This study presents results on the fluid and salt chemistry for the Makgadikgadi, a substantial continental basin in the semi-arid Kalahari. The aims of the study are to improve understanding of the hydrology of such a system and to identify the sources of the solutes and the controls on their cycling within pans. Sampling took place against the backdrop of unusually severe flooding as well as significant anthropogenic extraction of subsurface brines. This paper examines in particular the relationship between the chemistry of soil leachates, fresh stream water, salty lake water, surface salts and subsurface brines at Sua Pan, Botswana with the aim of improving the understanding of the system’s hydrology. Occasionally during the short wet season (December–March) surface water enters the saline environment and precipitates mostly calcite and halite, as well as dolomite and traces of other salts associated with the desiccation of the lake. The hypersaline subsurface brine (up to TDS 190,000 mg/L) is homogenous with minor variations due to pumping by BotAsh mine (Botswana Ash (Pty) Ltd.), which extracts 2400 m3 of brine/h from a depth of 38 m. Notable is the decrease in TDS as the pumping rate increases which may be indicative of subsurface recharge by less saline water. Isotope chemistry for Sr (87Sr/86Sr average 0.722087) and S (δ34S average 34.35) suggests subsurface brines have been subject to a lithological contribution of undetermined origin. Recharge of the subsurface brine from surface water including the Nata River appears to be negligible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号