首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   5篇
  国内免费   3篇
测绘学   1篇
大气科学   9篇
地球物理   9篇
地质学   37篇
海洋学   1篇
综合类   1篇
自然地理   3篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   3篇
  2016年   5篇
  2015年   4篇
  2013年   3篇
  2012年   3篇
  2011年   3篇
  2010年   4篇
  2009年   4篇
  2008年   5篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   5篇
  1997年   2篇
  1989年   1篇
  1987年   1篇
排序方式: 共有61条查询结果,搜索用时 15 毫秒
31.
The early stages of succession in newly created wetlands should be impacted by the region in which the wetland is located, since climate may have filtered the dominant biological strategies of the taxa leading this process and may condition their dynamics. We studied the early successional patterns of macroinvertebrates within man made ponds, located in cold temperate (Scandinavian Peninsula) and Mediterranean regions (Iberian Peninsula), during the first three years following their creation. We predicted (1) non random subsets of the regional species pool (deterministic assembly) guiding the successional process in cold temperate wetlands, and random (stochastic) assembly in the Mediterranean region; (2) higher successional rates in Mediterranean ponds than in the cold temperate ponds, with contrary episodes of highest and lowest change throughout the year; and (3) a significant difference in the composition of biological traits between regions, due to the dominance of traits adapted to hydrological variability in the Mediterranean region. Hypotheses on community structure (1) and the composition of dominant biological traits (3) were mostly supported – deterministic assembly mechanisms in the cold temperate ponds and stochastic assembly in the Mediterranean ponds; and a dominance of different biological traits between regions, explained by the need to overcome hydrological disturbances in the Mediterranean ponds. The dynamics of succession (2) were explained by climatic factors in the cold temperate region but not in the Mediterranean ponds. We suggest that the intrinsic hydrological variability of Mediterranean lentic systems may be a major factor driving community changes in man-made wetlands in this region. In order to generalize the observed patterns, we performed a meta-analysis of the temporal trends of taxonomic distinctness parameters of other successional studies across a latitudinal gradient in Europe, which supported the differences we had observed between latitudinal extremes.  相似文献   
32.
The Donbas Foldbelt (DF) is the compressionally deformed segment of a large Late Palaeozoic rift cross‐cutting the southern part of the East European Craton and is traditionally described as a classic example of an inverted intracratonic rift basin. Proposed formational models are often controversial and numerous issues are still a matter of speculation, primarily due to the lack of absolute time constraints and insufficient knowledge of the thermal evolution. We investigate the low‐temperature thermal history of the DF by means of zircon fission track and apatite fission track (AFT) thermochronology applied to Upper Carboniferous sediments. In all samples, the AFT chronometer was reset shortly after deposition in the Early Permian (~275 Ma). Samples contained kinetically variable apatites that are sensitive to different temperatures and using statistic‐based component analysis incorporating annealing characteristics of individual grains assessed by Dpar , we identified several distinct age populations, ranging from the Late Permian (~265 Ma) to the Late Cretaceous (~70 Ma). We could thus constrain the thermal history of the DF during a ~200 Myr long period following the thermal maximum. We found that earliest cooling of Permian and Permo‐Triassic age is recorded on the basin margins whereas the central parts were residing in or slowly cooling through the apatite partial annealing zone during Jurassic and most of Cretaceous times, and then finally cooled to near‐surface conditions latest around the Cretaceous/Palaeogene boundary. Our data show that Permian erosion was less significant and Mesozoic erosion more significant than generally assumed. Inversion and pop‐up of the DF occurred in the Cretaceous and not in the Permian as previously thought. This is indicated by overall Cretaceous AFT ages in the central parts of the basin.  相似文献   
33.
Detrital zircon U/Pb geochronology is a common tool used to resolve stratigraphic questions,inform basin evolution and constrain regional geological histories.In favourable circumstances,detrital zircon populations can contain a concomitant volcanic contribution that provides constraints on the age of deposition.However,for non-volcanic settings,proving isolated detrital zircon grains are from contemporaneous and potentially remote volcanism is challenging.Here we use same grain(U-Th)/He thermochronology coupled with U/Pb geochronology to identify detrital zircon grains of contemporary volcanic origin.(U-Th)/He ages from Cretaceous zircon grains in southern Australia define a single population with a weighted mean age of 104±6.1 Ma.indistinguishable from zircon U/Pb geochronology and palynology(~104.0-107.5 Ma).Detrital zircon trace-element geochemistry is consistent with a continental signature for parent rocks and coupled with detrital grain ages,supports derivation from a2000 km distant early-to mid-Cretaceous Whitsunday Volcanic Province in eastern Australia.Thus,integration of biostratigraphy,single-grain zircon double-dating(geochronology and thermochronology)and grain geochemistry enhances fingerprinting of zircon source region and transport history.A distal volcanic source and rapid continental-scale transport to southern Australia is supported here.  相似文献   
34.
The thermal evolution of the only known Alpine (Cretaceous) granite in the Western Carpathians (Rochovce granite) is studied by low-temperature thermochronological methods. Our apatite fission track and apatite (U-Th)/He ages range from 17.5 ± 1.1 to 12.9 ± 0.9 Ma, and 12.9 ± 1.8 to 11.3 ± 0.8 Ma, respectively. The data thus show that the Rochovce granite records a thermal event in the Middle to early Late Miocene, which was likely related to mantle upwelling, volcanic activity, and increased heat flow. During the thermal maximum between ~17 and 8 Ma, the granite was heated to temperatures ? 60 °C. Increase of cooling rates at ~12 Ma recorded by the apatic fission track and (U-Th)/He data is primarily related to the cessation of the heating event and relaxation of the isotherms associated with the termination of the Neogene volcanic activity. This contradicts the accepted concept, which stipulates that the internal parts of the Western Carpathians were not thermally affected during the Cenozoic period. The Miocene thermal event was not restricted to the investigated part of the Western Carpathians, but had regional character and affected several basement areas in the Western Carpathians, the Pannonian basin and the margin of the Eastern Alps.  相似文献   
35.
A study of erosion rates by in-situ 10Be concentrations in granites of Miocene high-elevation paleosurfaces in Corsica indicates maximum erosion rates between 8 and 24 mm/kyear. The regional distribution of measured erosion rates indicates that the local climatic conditions, namely precipitation, the petrographic composition of granites, and the degree of brittle deformation govern erosion rates. Chemical erosion dominates even at elevations around 2,000 m in presently subalpine climate conditions. Field evidence indicates that erosion operates by continuous dissolution and/or disintegration to grains (grusification). The erosion rates are relatively high with respect to the preservation of inferred Early Miocene landscapes. We infer temporal burial in the Middle Miocene and significantly lower erosion rates in the Neogene until ∼3 Ma to explain the preservation of paleosurfaces, in line with fission track data. Valley incision rates that are a magnitude higher than erosion rates on summit surfaces result in relief enhancement and long-term isostatic surface uplift. On the other hand, widening and deepening of valleys by cyclic glaciation progressively destroys the summit surface relics.
Wolfgang FrischEmail:
  相似文献   
36.
Thermal history modelling based on zircon‐ and apatite fission track and apatite (U–Th)/He data constrain and refine the near‐surface exhumation of the south‐eastern Tauern Window (Penninic units) and neighbouring Austroalpine basement units in the Eastern Alps. Fast exhumation on both sides of the Penninic/Austroalpine boundary coincides with a period of lateral extrusion and tectonic denudation of the Penninic units in Miocene time (22–12 Ma). The jump to older ages occurs within the Austroalpine unit along the Polinik fault, which therefore defines the boundary between the tectonically denuded units and the hangingwall at that time. According to the different (U–Th)/He ages between the Penninic Hochalm‐ and Sonnblick Domes we demonstrate a differential cooling history of these two domes in the latest Miocene and early Pliocene.  相似文献   
37.
38.
The post-Mesoproterozoic tectonometamorphic history of the Musgrave Province, central Australia, has previously been solely attributed to intracontinental compressional deformation during the 580 -520 Ma Petermann Orogeny. However, our new structurally controlled multi-mineral geochronology results,from two north-trending transects, indicate protracted reactivation of the Australian continental interior over ca. 715 million years. The earliest events are identified in the hinterland of the orogen along the western transect. The first tectonothermal event, at ca. 715 Ma, is indicated by40 Ar/39 Ar muscovite and U e Pb titanite ages. Another previously unrecognised tectonometamorphic event is dated at ca. 630 Ma by Ue Pb analyses of metamorphic zircon rims. This event was followed by continuous cooling and exhumation of the hinterland and core of the orogen along numerous faults, including the Woodroffe Thrust,from ca. 625 Ma to 565 Ma as indicated by muscovite, biotite, and hornblende40 Ar/39 Ar cooling ages. We therefore propose that the Petermann Orogeny commenced as early as ca. 630 Ma. Along the eastern transect,40 Ar/39 Ar muscovite and zircon(Ue Th)/He data indicate exhumation of the foreland fold and thrust system to shallow crustal levels between ca. 550 Ma and 520 Ma, while the core of the orogen was undergoing exhumation to mid-crustal levels and cooling below 600-660℃. Subsequent cooling to 150 -220℃ of the core of the orogen occurred between ca. 480 Ma and 400 Ma(zircon [Ue Th]/He data)during reactivation of the Woodroffe Thrust, coincident with the 450 -300 Ma Alice Springs Orogeny.Exhumation of the footwall of the Woodroffe Thrust to shallow depths occurred at ca. 200 Ma. More recent tectonic activity is also evident as on the 21 May, 2016(Sydney date), a magnitude 6.1 earthquake occurred, and the resolved focal mechanism indicates that compressive stress and exhumation along the Woodroffe Thrust is continuing to the present day. Overall, these results demonstrate repeated amagmatic reactivation of the continental interior of Australia for ca. 715 million years, including at least 600 million years of reactivation along the Woodroffe Thrust alone. Estimated cooling rates agree with previously reported rates and suggest slow cooling of 0.9 -7.0℃/Ma in the core of the Petermann Orogen between ca. 570 Ma and 400 Ma. The long-lived, amagmatic, intracontinental reactivation of central Australia is a remarkable example of stress transmission, strain localization and cratonization-hindering processes that highlights the complexity of Continental Tectonics with regards to the rigid-plate paradigm of Plate Tectonics.  相似文献   
39.
40.
The weathering of a rhyolitic lava flow of the Paraná Basin (Brazil) developed, on few centimeters only, simplified petrographic features. The initial meteoric fluid pass-way is marked by celadonite-to-nontronite transformation. The second step is the complete dissolution of plagioclases, and the last one is the massive precipitation of halloysite. The geochemical mass balances according to the alteration features demonstrate the progressive leaching of major and trace elements fractionated by plagioclases, glass and opaques, and the sorption of Cu>As>Sb in the halloysite matrix. To cite this article: M. Bernard et al., C. R. Geoscience 336 (2004).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号