排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Mineral assemblages and textures are described from clinopyroxene-bearingmeta-syenites and related rocks from a small area in the PenninicBasement Complex of the south-east Tauern Window. Evidence from mineral textures, mineral compositions and geobarometryindicate that the clinopyroxene, a sodic salite, crystallizedas part of an equilibrium albite-epidote-amphibolite faciesparagenesis in the 3540 Ma meso-Alpine metamorphic event.Phase relations in co-facial quartz + albite + K-feldspar +sphene-bearing meta-syenites and meta-granites are examinedusing a projection from these minerals onto the plane (A12O3+ Fe2O3)-CaO-(MgO + FeO + MnO). The projection demonstratesthat salitic clinopyroxene can only be a stable phase in suchrocks if the bulk-rock Al/Na + K ratios are low. This is confirmedby comparing the whole-rock analyses of clinopyroxene-bearingmeta-syenites with those of clinopyroxene-free meta-syenitesand meta-granites. Mineral assemblages in a variety of lithologies from the south-eastTauern Window are used to construct a generalized AKM diagramfor magnesian albite + epidote + quartz-bearing rocks of thealbite-epidote-amphibolite facies. Thermochemical calculations indicate that the meta-syeniteswere metamorphosed at temperatures close to 500 C and at a pressureof 6+2 4 kb. Fluids in equilibrium with meta-syeniteand meta-granite mineral assemblages had XH2O values of 095,assuming XH2O + XCO2O= 1.0. 相似文献
2.
G. T. R. DROOP 《Journal of Metamorphic Geology》1985,3(4):371-402
Abstract The Pennine rocks exposed in the south-east Tauern Window, Austria, contain mineral assemblages which crystallized in the mid-Tertiary ‘late Alpine’regional metamorphism. The pressure and temperature conditions at the thermal peak of this event have been estimated for rocks at four different structural levels using a variety of published and thermochemically derived geobarometers and geothermometers. The results are: (a) In the garnet+chlorite zone, 2–5 km structurally above the staurolite+biotite isograd: T= 490.50°C, P= 7° 1 kbar; (b) Within 0.5 km of the staurolite+biotite isograd: T= 560±300C, P=7.1 kbar; (c) In the staurolite+biotite zone, c. 2.5 km structurally below the staurolite+biotite isograd: T= 610±30°C, P=7.6±1.2 kbar; (d) In the staurolite+biotite zone, 3–4 km structurally below the staurolite+biotite isograd: T= 630±40°C, P= 6.6±1.2 kbar. The pressure estimates imply that the total thickness of overburden above the basement-cover interface in the mid-Tertiary was c. 26.4 km. This overburden can only be accounted for by the Austro-Alpine units currently exposed in the vicinity of the Tauern Window, if the Altkristallin (the ‘Middle Austro-Alpine’nappe) was itself buried beneath an ‘Upper Austro-Alpine’nappe or nappe-pile which was 7.4 km thick at that time. The occurrence of epidote + margarite + quartz pseudomorphs after lawsonite in garnet, indicates that part of the Mesozoic Pennine cover sequence in the south-east Tauern experienced blueschist-facies conditions (T<450°C, P<12 kbar) in early Alpine times. Evidence from the central Tauern is used to argue that the blueschist-facies imprint post-dated the main phase of tectonic thickening (D1A) and was thus a direct consequence of continental collision. Combined oxygen-isotope and fluid-inclusion studies on late-stage veins, thought to have been at lithostatic pressure and in thermal equilibrium with their host rocks during formation, suggest that they crystallized from aqueous fluids at 1.1±0.4 kbar and 420.20°C. Early Alpine, late Alpine and vein-formation P–T constraints have been used to construct a P–T path for the base of the Mesozoic cover sequence in the south-east Tauern Window. The prograde part of the P–T path, between early and late Alpine metamorphic imprints, is unlikely to have been a smooth curve and may well have had a low dP/dT overall; the decompression (presumably due to erosion) which occurred immediately before the thermal peak and possibly also earlier in the Tertiary, was probably partly or completely cancelled by the effects of early- to mid-Tertiary (D2A) tectonic thickening. The thermal peak of metamorphism was followed by a phase of almost isothermal decompression, which implies a period of rapid uplift in the middle Tertiary. The peak metamorphic P–T estimates are compared with the solutions of England's (1978) one-dimensional conductive thermal model of the Eastern Alps, and are shown to be consistent with the idea that the late Alpine metamorphism was caused by tectonic burial of the Pennine Zone beneath the Austro-Alpine nappes in the absence of extraneous heat sources, such as large intrusions, at depth. 相似文献
3.
Alpine metamorphism in the south-east Tauern Window, Austria: 2. Rates of heating, cooling and uplift 总被引:2,自引:0,他引:2
Abstract Existing geochronological data are reviewed and new Rb-Sr, K-Ar and 39 Ar–40 Ar ages are presented, including a suite of 33 mica ages from a 20 km north–south tunnel section. These data are discussed in relation to the thermal history from the overthrusting of the Autroalpine nappes c. 65 Myr ago to the present. The earliest phase of metamorphism, involving lawsonite crystallization, is associated with emplacement of these nappes. Subsequently, temperatures in the rocks beneath rose, at a mean rate of 3–6°C/Myr, until the climax of metamorphism.
At high structural levels, published data indicate an age > 35 Myr for the metamorphic climax. In contrast, a new39 Ar–40 Ar step-heating age of 23.8 ± 0.8 Myr on amphibole, from near the base of Peripheral Schieferhülle, closely approximates the age of metamorphism and provides the first clear indication that the climax of metamorphism occurred later at deeper structure levels. Following the climax, near-isothermal uplift and erosion reduced pressure to c. 1 kbar before white mica closure at 19 Myr; this implies uplift at >3 mm/yr.
Along the tunnel section, white mica K-Ar ages vary systematically from 24 Myr to 16.5 Myr with position relative to a late 4 km amplitude dome whereas biotite Rb-Sr ages are uniform at 16.5 Myr across the whole profile; doming is thus dated at 16.5 Myr with transient uplift rates >5 mm/yr. At other times uplift rates were <1 mm/yr. 相似文献
At high structural levels, published data indicate an age > 35 Myr for the metamorphic climax. In contrast, a new
Along the tunnel section, white mica K-Ar ages vary systematically from 24 Myr to 16.5 Myr with position relative to a late 4 km amplitude dome whereas biotite Rb-Sr ages are uniform at 16.5 Myr across the whole profile; doming is thus dated at 16.5 Myr with transient uplift rates >5 mm/yr. At other times uplift rates were <1 mm/yr. 相似文献
4.
G. T. R. DROOP 《Journal of Metamorphic Geology》1983,1(1):3-12
An occurrence of quartz-eclogite is described from the Inner Schieferhülle unit of the Pennine Basement Complex in the SE Tauern Window, Austria.
Field relations strongly suggest a pre-Alpine age for the primary eclogitic mineral assemblage (garnet + omphacite + quartz + rutile). This implies that there was no connection between the formation of these eclogites and the late Cretaceous and Tertiary tectonic evolution of the Eastern Alps. The quartz-eclogite mineral assemblage crystallized under conditions of 620 ± 100°C and at pressures in excess of 12 kbar, and suffered amphibolitic overprinting of Alpine and possibly Hercynian age.
A four-stage polymetamorphic history is proposed for the Inner Schieferhülle: 相似文献
Field relations strongly suggest a pre-Alpine age for the primary eclogitic mineral assemblage (garnet + omphacite + quartz + rutile). This implies that there was no connection between the formation of these eclogites and the late Cretaceous and Tertiary tectonic evolution of the Eastern Alps. The quartz-eclogite mineral assemblage crystallized under conditions of 620 ± 100°C and at pressures in excess of 12 kbar, and suffered amphibolitic overprinting of Alpine and possibly Hercynian age.
A four-stage polymetamorphic history is proposed for the Inner Schieferhülle: 相似文献
5.
Processes and Conditions During Contact Anatexis, Melt Escape and Restite Formation: the Huntly Gabbro Complex, NE Scotland 总被引:1,自引:1,他引:1
The Huntly Gabbro is one of a suite of large, Ordovician, syn-orogenic,mid-crustal, layered, mafic intrusions, emplaced into Proterozoicmetaclastic rocks of NE Scotland soon after the thermal peakof static, high-T, low-P regional metamorphism. This gabbroand its associated contact metamorphic rocks illustrate a varietyof processes operating during contact anatexis and subsequentmelt segregation and extraction. These processes may closelymirror those occurring at much larger scales in the deep crustduring high-grade regional metamorphism and the generation ofgranitic magmas. The emplacement of the Huntly mafic magma resultedin high-grade contact metamorphism and, locally, anatexis ofmetapelites, leading to the formation of migmatites. The migmatitesand country-rock schists were studied to establish the physicalconditions of metamorphism and anatexis, the nature of the meltingreactions, the compositions of the melts produced, and the extentto which melting was a closed- or open-system process. The country-rockschists immediately to the south of the Huntly Complex containmineral assemblages characteristic of the regional andalusitezone. Thermobarometry of an andalusite schist yields regionalmetamorphic conditions of 537 ± 42°C and 0·27± 0·12 GPa, consistent with previously publishedPT estimates. The contact metamorphic rocks include sillimanitehornfelses, metatexites and diatexites. The metatexites consistof cordieriteK-feldspar hornfels melanosomes and K-feldspar-richgarnetiferous leucosomes. The diatexites consist of schollenof fine-grained granoblastic hornfels and metatexite suspendedin igneous-textured matrix rocks composed of abundant sub/euhedralgarnet, cordierite, plagioclase and, locally, orthopyroxene,with minor interstitial biotite, K-feldspar and quartz. Thehornfels melanosomes and schollen retained their structuralintegrity during partial melting, but the matrix rocks did not.In the highest-grade diatexites, the assemblage Grt + Opx +Crd + Hc + Pl characterizes both the hornfels schollen and thesub/euhedral minerals of the matrix rocks. Application of phaseequilibria to Opx-bearing rocks yields estimated peak-metamorphicconditions of 900 ± 50°C, 0·45 ± 0·1GPa and aH2O < 0·3. The pressure estimate impliesan emplacement depth of 相似文献
6.
The S.W. Nabitah Mobile Belt, Saudi Arabia, contains a Proterozoic island-arc complex. In the Qadda area, the metavolcanic-dominated supracrustal sequence records amphibolite facies regional metamorphism of high-T , low-P type. Calcsilicate rocks and aluminous dolomitic marbles within the supracrustal sequence have been studied in detail to refine estimates of peak metamorphic P–T conditions and assess the role of fluids during prograde and retrograde metamorphism. Fluid-independent thermobarometers (including the calcite–dolomite thermometer and P-sensitive equilibria involving grossular, wollastonite, anorthite, meionite, quartz and calcite) yield peak P–T conditions of c. 650–660 °C, 4 kbar, both higher than previous estimates, giving a revised average thermal gradient of c. 45 °C km–1. The close match between the peak temperatures implied by calcite–dolomite thermometry and those recorded by univariant devolatilization equilibria suggests that the calcareous rocks were fluid-bearing during late-prograde and peak metamorphic stages. These fluids were essentially binary H2O–CO2 mixtures with low NaCl and HF concentrations. Most were H2O-rich, with XCO2 between 0.02 and 0.2, but values of c. 0.6 are recorded by two samples. High modal abundances of the solid products of decarbonation reactions (e.g. c. 10–50% wollastonite) in many of the rocks that record low-XCO2 equilibrium fluids implies infiltration of significant quantities of externally derived aqueous fluid during late-prograde metamorphism, but not enough to exhaust the buffering capacity of the rocks. Calculated minimum time-integrated fluid-to-rock ratios of five wollastonite-bearing calcsilicate rocks range from 0.7±0.22 to 1.39±0.46 (1σ); those of six marbles range from c. 0 to 4±1.4. The latter variation occurs on a metre-scale, implying focusing of fluid flow. Diopside-rich rocks record fluid-to-rock ratios of up to 88±48. Penetrative wollastonite lineations indicate a temporal link between infiltration and distributed ductile deformation. Infiltrating fluids were probably derived both from the prograde dehydration of adjacent metabasalts and metatuffs and from crystallization of voluminous pretectonic granitoid intrusions. In general, fluid-to-rock ratios deduced for the metavolcanic-dominated Qadda area are similar to those recorded by rocks in the metasediment-dominated terrane of N. New England. The occurrence of post-tectonic retrograde hydration textures in both carbonate-bearing and carbonate-free rocks otherwise lacking hydrous minerals testifies to infiltration of aqueous fluids during retrograde metamorphism in the absence of penetrative deformation. Minimum fluid-to-rock ratios calculated for secondary grossular reaction rims in some calcsilicates are c. 0.04. Later patchy hydration of scapolite probably utilized static, pore-filling fluids remaining after the early retrograde infiltration. 相似文献
7.
G. T. R. DROOP 《Journal of Metamorphic Geology》1989,7(3):383-403
ABSTRACT Sequential reaction textures in Archaean garnet-corundum-sapphirine granulites from the Central Zone of the Limpopo Belt document a progression from early, coarse-grained, high-pressure (P > 9.5 kbar) granulite-facies assemblages (M1) to late, low-pressure (P <6 kbar) granulite-facies sub-assemblages (M2). The stable M1 assemblage was garnet (57% pyrope; Mg/(Mg + Fe) = 62) + sapphirine + corundum + gedrite + phlogopite + rutile. Late-M1 boron-free kornerupine grew at the expense of garnet and corundum, and coexisted with garnet, sapphirine and gedrite. Partial or complete breakdown of coarse garnet and kornerupine during M2 resulted in the development of pseudomorphs and coronas consisting of fine-grained symplectic intergrowths of cordierite, gedrite and sapphirine (later, spinel). The majority of reaction textures can be explained in terms of a stable reaction sequence, and a model time-sequence of mineral facies can be constructed. When compared with a qualitative petrogenetic grid of (Fe, Mg)-discontinuous reactions in the FMASH multisystem sapphirine-garnet-corundum-spinel-cordierite-gedrite-kornerupine, the facies-sequence indicates decompression at essentially constant T assuming constant a(H2O). Exhumation of M1 corundum inclusions during M2 breakdown of kornerupine resulted in production of metastable spinel by a disequilibrium reaction with gedrite. A second disequilibrium reaction of the spinel with cordierite produced sapphirine. The operation of such reaction while pressure was decreasing (the opposite dP from that implied by the texture if assumed to be the product of an equilibrium reaction) has serious implications for the use of reaction textures in the construction of P-T vectors. Garnet-biotite thermometry on garnet interiors and phlogopite inclusions in corundum yields temperatures of ca. 850°C for the M1 stage. A minimum late-M1 pressure of ca. 7 kbar is indicated by the former association of kornerupine and corundum. Relict M1 kyanites reported by other workers indicate a minumum early-M1 pressure of 9.5 kbar, implying metamorphism at depths of at least 33 km (probably 38km). The high-pressure granulite-facies metamorphism was followed by an almost isothermal pressure decrease of > 5 kbar, indicative of rapid uplift. The P-T path is interpreted as the product of a single metamorphic cycle which probably took place in response to tectonic thickening of the crust. Such a process contrasts with the extensional origin recently proposed for isobarically cooled granulite-facies terranes. 相似文献
8.
Pelitic hornfelses within the inner thermal aureole of the Etive igneous complex underwent limited partial melting, generating agmatic micro‐stromatic migmatites. In this study, observed volume proportions of vein leucosomes in the migmatites are compared with modelled melt volumes in an attempt to constrain the controls on melting processes. Petrogenetic modelling in the MnNCKFMASHT system was performed on the compositions of 15 analysed Etive pelite samples using THERMOCALC. Melt modes were calculated at 2.2 kbar (the estimated pressure in the southern Etive aureole) from solidus temperatures to 800 °C for both fluid‐absent and fluid‐present conditions. Volume changes accompanying fluid‐absent melting at 2.2 kbar were also calculated. P–T pseudosections reproduce the zonal sequence of the southern Etive aureole fairly well. The modelled solidus temperatures of silica‐rich pelitic compositions are close to 680 °C at 2.2 kbar and, in the absence of free fluid, melt modes in such compositions rise to between 12 and 29% at 800 °C, half of which is typically produced over the narrow reaction interval in which orthopyroxene first appears. Silica‐poor compositions have solidus temperatures of up to ~770 °C and yield <11.4% melt at 800 °C under fluid‐absent conditions. For conditions of excess H2O, modelled melt modes increase dramatically within ~13 °C of the solidus, in some cases to >60%; by 800 °C they range from 61 to 88% and from 29 to 74% in silica‐rich and silica‐poor compositions, respectively. Calculated volume changes for fluid‐absent melting are positive for all modelled compositions and reach 4.5% in some silica‐rich compositions by 800 °C. Orthopyroxene formation is accompanied by a volume increase of up to 1.48% over a temperature increase of as little as 2.7 °C, supporting the arguments for melt‐induced ‘hydrofracturing’ as a viable melt‐escape mechanism in low‐P metamorphism. Mineral assemblages in the innermost aureole support previous conclusions that partial melting took place predominantly under fluid‐absent conditions. However, vein leucosome proportions, estimated by image analysis, do not show the expected correlation with grade, and are locally greatly in excess of melt modes predicted by fluid‐absent models, particularly close to the melt‐in isograd. Melting of interlayered psammites, addition of H2O from interlayered melt‐free rocks, and metastable persistence of muscovite are ruled out as major causes of the excess melt anomaly. The most likely cause, we believe, is that local variations existed in the amount of fluid available at the onset of melting, promoted by focussing of fluid released by dehydration in the middle and outer aureole; however, some redistribution of melt by compaction‐driven flow through the vein channel network cannot be ruled out. The formation of melt‐filled fractures in the inner Etive aureole was assisted by stresses that caused extension at high angles to the igneous contact. The fractures were probably caused either by transient pressure reduction in the diorite magma chamber associated with a second phase of intrusion, or by sub‐solidus thermal contraction in the diorite pluton during the early stages of inner‐aureole cooling. 相似文献
9.
Reaction Textures and Metamorphic Evolution of Sapphirine-bearing Granulites from the Gruf Complex, Italian Central Alps 总被引:7,自引:4,他引:7
Mineral chemistries and textures are described from a suiteof sapphirine-bearing granulites from the Gruf Complex of theItalian Central Alps. The granulites contain combinations ofgarnet, orthopyroxene, sapphirine, sillimanite, cordierite,biotite, quartz, spinel, corundum, staurolite, plagioclase,K-feldspar, ilmenite and rutile, in assemblages with low (usuallynegative) variance. They are outstanding in that they preservea textural and chemical record of a protracted metamorphic evolution. Reaction textures are common and include: (i) pseudomorphs (e.g.of sillimanite after kyanite); (ii) relatively coarse-grainedmonomineralic reaction rims (e.g. of cordierite between sapphirineand quartz); (iii) fine-grained symplectitic coronas (e.g. oforthopyroxene + sapphirine round garnet); (iv) inclusions, ingarnet cores, of minerals (e.g. staurolite) not found elsewherein the rocks. Detailed microprobe study has revealed large chemical variationswithin each phase. Different textural types of each phase havedifferent compositions, and strong zoning is preserved in garnet(Mg/(Mg + Fe) from 0.30 to 0.61) and coarse sapphirine. Inclusionpopulations in garnet correlate with host composition. The textural and chemical features are interpreted in termsof successive equilibrium assemblages and reactions. Metamorphicconditions operative at each stage in the evolution are calculatedusing published geothermometers and geobarometers as well asthermodynamically calibrated MAS and FASH equilibria. The resultsare used to construct a PT-time path for the sapphirine-granulites,which can be summarized as follows: (i) Increasing T at high P (>7 kb). Partial melting. (ii) A maximum T of 830 ?C attained at 10 kb. (iii) Almost isothermal decompression, reaching 750 ?C at 5kb, under conditions of low µH2O. (iv) Further cooling, and decompression. Localized hydration.Rocks exposed. The PT-time path is interpreted as the product of a singlemetamorphic cycle (the tertiary Lepontine event)and is extrapolated to the Gruf Complex as a whole. When combinedwith published geochronological data, the results indicate anaverage uplift rate in excess of 2 mm/yr for the Gruf Complexbetween 38 and 30 Ma ago. An in situ partial melting origin for the sapphirine-granulitesis favoured. Extraction of an iron-rich granitic liquid froma normal pelitic palaeosome could generate a refractory residuewith the required Mg, Al-rich composition. The change in bulksolid composition during partial melting is thought to accountfor the extraordinarity strong zoning in the garnets. 相似文献
10.
The H2O and CO2 content of cordierite was analysed in 34 samples from successive contact metamorphic zones of the Etive thermal aureole, Scotland, using Fourier‐transform infrared spectroscopy (FTIR). The measured volatile contents were used to calculate peak metamorphic H2O and CO2 activities. Total volatile contents are compared with recently modelled cordierite volatile saturation surfaces in order to assess the extent of fluid‐present v. fluid‐absent conditions across the thermal aureole. In the middle aureole, prior to the onset of partial melting, calculated aH2O values are high, close to unity, and measured volatile contents intersect modelled H2O–CO2 saturation curves at the temperature of interest, suggesting that fluid‐present conditions prevailed. Total volatile contents and aH2O steadily decrease beyond the onset of partial melting, consistent with the notion of aH2O being buffered to lower values as melting progresses once free hydrous fluid is exhausted. All sillimanite zone samples record total volatile contents that are significantly lower than modelled H2O–CO2 saturation surfaces, implying that fluid‐absent conditions prevailed. The lowest recorded aH2O values lie entirely within part of the section where fluid‐absent melting reactions are thought to have dominated. Samples within 30 m of the igneous contact appear to be re‐saturated, possibly via a magmatically derived fluid. In fluid‐absent parts of the aureole, cordierite H2O contents yield melt–H2O contents that are compatible with independently determined melt–H2O contents. The internally consistent cordierite volatile data and melt–H2O data support the conclusion that the independent P–T estimates applied to the Etive rocks were valid and that measured cordierite volatile contents are representative of peak metamorphic values. The Etive thermal aureole provides the most compelling evidence, suggesting that the cordierite fluid monitor can be used to accurately assess the fluid conditions during metamorphism and partial melting in a thermal aureole. 相似文献