首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   453篇
  免费   13篇
  国内免费   2篇
测绘学   7篇
大气科学   43篇
地球物理   21篇
地质学   273篇
海洋学   24篇
天文学   5篇
自然地理   95篇
  2016年   2篇
  2015年   3篇
  2014年   8篇
  2013年   26篇
  2012年   7篇
  2011年   14篇
  2010年   10篇
  2009年   17篇
  2008年   12篇
  2007年   15篇
  2006年   10篇
  2005年   21篇
  2004年   15篇
  2003年   14篇
  2002年   5篇
  2001年   6篇
  2000年   10篇
  1999年   11篇
  1998年   17篇
  1997年   35篇
  1996年   26篇
  1995年   12篇
  1994年   20篇
  1993年   8篇
  1992年   7篇
  1991年   16篇
  1990年   20篇
  1989年   10篇
  1988年   12篇
  1987年   10篇
  1986年   9篇
  1985年   5篇
  1984年   4篇
  1983年   6篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   4篇
  1977年   5篇
  1976年   4篇
  1973年   1篇
  1972年   2篇
  1971年   3篇
  1970年   1篇
  1968年   1篇
  1967年   2篇
  1966年   2篇
  1963年   3篇
  1962年   1篇
排序方式: 共有468条查询结果,搜索用时 31 毫秒
51.
The tidewater glacier complex of Kongsvegen/Kronebreen, at the head of Kongsfjorden in north-west Spitsbergen, has advanced rapidly several times since its Neoglacial maximum. Two such advances, 1869 and 1948, are well constrained in time and space and are widely interpreted as glacier surges. During the 1869 advance an ice-dammed lake formed on the western side of Ossian Sarsfjellet. This ice-dammed lake is associated with a thrust moraine complex. Four lake levels are identified, two of which are associated with rock-cut shorelines implying a degree of lake stability. The history of this lake, the nature of the ice dam and its relationship to the thrust moraine complex are discussed. The lake history spanning 28 to 35 years is used to assess the ice-marginal dynamics of the Kongsvegen/Kronebreen glacier. It is concluded that, contrary to previous suggestions, the rapid advance of this tidewater glacier may simply be an example of a non-climatic ice-marginal fluctuation, of the type common to tidewater glacier, as opposed to a glacier surge. A second ice-dammed lake, to the east of Ossian Sarsfjellet, formed sometime after 1869 as the ice retreated, and still exists today. This largely supraglacial lake is associated with a very different geomorphological assemblage, which has a poor long-term preservation potential. The geomorphological characteristics of the two lakes on Ossian Sarsfjellet are compared and used to discuss the problems associated with the recognition of ice-dammed lakes within the Pleistocene record. On the basis of the evidence presented here, ice-dammed lakes may be more common during deglaciation than currently suggested.  相似文献   
52.
53.
54.
55.
Lower to Middle Turonian deposits within the Bohemian Cretaceous Basin (Central Europe) consist of coarse‐grained deltaic sandstones passing distally into fine‐grained offshore sediments. Dune‐scale cross‐beds superimposed on delta‐front clinoforms indicate a vigorous basinal palaeocirculation capable of transporting coarse‐grained sand across the entire depth range of the clinoforms (ca 35 m). Bi‐directional, alongshore‐oriented, trough cross‐set axes, silt drapes and reactivation surfaces indicate tidal activity. However, the Bohemian Cretaceous Basin at this time was over a thousand kilometres from the shelf break and separated from the open ocean by a series of small islands. The presence of tidally‐influenced deposits in a setting where co‐oscillating tides are likely to have been damped down by seabed friction and blocked by emergent land masses is problematic. The Imperial College Ocean Model, a fully hydrodynamic, unstructured mesh finite element model, is used to test the hypothesis that tidal circulation in this isolated region was capable of generating the observed grain‐size distributions, bedform types and palaeocurrent orientations. The model is first validated for the prediction of bed shear stress magnitudes and sediment transport pathways against the present‐day North European shelf seas that surround the British Isles. The model predicts a microtidal to mesotidal regime for the Bohemian Cretaceous Basin across a range of sensitivity tests with elevated tidal ranges in local embayments. Funnelling associated with straits increases tidal current velocities, generating bed shear stresses that were capable of forming the sedimentary structures observed in the field. The model also predicts instantaneous bi‐directional currents with orientations comparable with those measured in the field. Overall, the Imperial College Ocean Model predicts a vigorous tide‐driven palaeocirculation within the Bohemian Cretaceous Basin that would indisputably have influenced sediment dispersal and facies distributions. Palaeocurrent vectors and sediment transport pathways however vary markedly in the different sensitivity tests. Accurate modelling of these parameters, in this instance, requires greater palaeogeographic certainty than can be extracted from the available rock record.  相似文献   
56.
The laminated limestones of the Early Cretaceous Crato Formation of the Araripe Basin (North‐eastern Brazil) are world‐famous for their exceptionally well‐preserved and taxonomically diverse fossil fauna and flora. Whereas the fossil biota has received considerable attention, only a few studies have focused on the sedimentary characteristics and palaeoenvironmental conditions which prevailed during formation of the Crato Fossil Lagerstätte. The Nova Olinda Member represents the lowermost and thickest unit (up to 10 m) of the Crato Formation and is characterized by a pronounced rhythmically bedded, pale to dark lamination. To obtain information on palaeoenvironmental conditions, sample slabs derived from three local stratigraphic sections within the Araripe Basin were studied using high‐resolution multiproxy techniques including detailed logging, petrography, μ‐XRF scanning and stable isotope geochemistry. Integration of lithological and petrographic evidence indicates that the bulk of the Nova Olinda limestone formed via authigenic precipitation of calcite from within the upper water column, most probably induced and/or mediated by phytoplankton and picoplankton activity. A significant contribution from a benthonic, carbonate‐secreting microbial mat community is not supported by these results. Deposition took place under anoxic and, at least during certain episodes, hypersaline bottom water conditions, as evidenced by the virtually undisturbed lamination pattern, the absence of a benthonic fauna and by the occurrence of halite pseudomorphs. Input of allochthonous, catchment‐derived siliciclastics to the basin during times of laminite formation was strongly reduced. The δ18O values of authigenic carbonate precipitates (between ?7·1 and ?5·1‰) point to a 18O‐poor meteoric water source and support a continental freshwater setting for the Nova Olinda Member. The δ13C values, which are comparatively rich in 13C (between ?0·1 and +1·9‰), are interpreted to reflect reduced throughflow of water in a restricted basin, promoting equilibration with atmospheric CO2, probably in concert with stagnant conditions and low input of soil‐derived carbon. Integration of lithological and isotopic evidence indicates a shift from closed to semi‐closed conditions towards a more open lake system during the onset of laminite deposition in the Crato Formation.  相似文献   
57.
58.
59.
Although eskers are frequently described glaciofluvial landforms, they are poorly understood. To assist with the interpretation of Pleistocene examples, modern analogue data are required. This paper documents the morphology, sedimentology and formation of a 650 m long esker system in front of the high-arctic glacier Vegbreen in Svalbard. The esker is located between the Neoglacial maximum and the present ice front and appears to have formed both as a supraglacial trough-fill and as a channel/conduit-fill along the suture formed by two confluent glacier lobes. A range of sedimentary facies is preserved within this ridge system providing evidence for braided rivers, ephemeral lakes, episodic flow regimes and sediment gravity flows. This case study provides an important analogue for glaciofluvial sedimentation between retreating ice lobes.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号