首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41296篇
  免费   716篇
  国内免费   317篇
测绘学   959篇
大气科学   2944篇
地球物理   8001篇
地质学   14215篇
海洋学   3848篇
天文学   9741篇
综合类   74篇
自然地理   2547篇
  2021年   404篇
  2020年   401篇
  2019年   453篇
  2018年   940篇
  2017年   843篇
  2016年   1090篇
  2015年   608篇
  2014年   1001篇
  2013年   2073篇
  2012年   1132篇
  2011年   1619篇
  2010年   1470篇
  2009年   1983篇
  2008年   1645篇
  2007年   1730篇
  2006年   1587篇
  2005年   1311篇
  2004年   1270篇
  2003年   1241篇
  2002年   1193篇
  2001年   1056篇
  2000年   980篇
  1999年   810篇
  1998年   813篇
  1997年   829篇
  1996年   668篇
  1995年   656篇
  1994年   616篇
  1993年   570篇
  1992年   526篇
  1991年   495篇
  1990年   506篇
  1989年   496篇
  1988年   474篇
  1987年   553篇
  1986年   489篇
  1985年   604篇
  1984年   650篇
  1983年   592篇
  1982年   527篇
  1981年   577篇
  1980年   469篇
  1979年   458篇
  1978年   433篇
  1977年   433篇
  1976年   383篇
  1975年   378篇
  1974年   376篇
  1973年   384篇
  1971年   224篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
761.
Low-molecular-weight (LMW) aqueous organic acids were generated from six oil-prone source rocks under hydrous-pyrolysis conditions. Differences in total organic carbon-normalized acid generation are a function of the initial thermal maturity of the source rock and the oxygen content of the kerogen (OI). Carbon-isotope analyses were used to identify potential generation mechanisms and other chemical reactions that might influence the occurrence of LMW organic acids. The generated LMW acids display increasing 13C content as a function of decreasing molecular weight and increasing thermal maturity. The magnitudes of observed isotope fractionations are source-rock dependent. These data are consistent with δ13C values of organic acids presented in a field study of the San Joaquin Basin and likely reflect the contributions from alkyl-carbons and carboxyl-carbons with distinct δ13C values. The data do not support any particular organic acid generation mechanism. The isotopic trends observed as a function of molecular weight, thermal maturity, and rock type are not supported by either generation mechanisms or destructive decarboxylation. It is therefore proposed that organic acids experience isotopic fractionation during generation consistent with a primary kinetic isotope effect and subsequently undergo an exchange reaction between the carboxyl carbon and dissolved inorganic carbon that significantly influences the carbon isotope composition observed for the entire molecule. Although generation and decarboxylation may influence the δ13C values of organic acids, in the hydrous pyrolysis system described, the nondestructive, pH-dependent exchange of carboxyl carbon with inorganic carbon appears to be the most important reaction mechanism controlling the δ13C values of the organic acids.  相似文献   
762.
The short-lived 182Hf-182W-isotope system is an ideal clock to trace core formation and accretion processes of planets. Planetary accretion and metal/silicate fractionation chronologies are calculated relative to the chondritic 182Hf-182W-isotope evolution. Here, we report new high-precision W-isotope data for the carbonaceous chondrite Allende that are much less radiogenic than previously reported and are in good agreement with published internal Hf-W chronometry of enstatite chondrites. If the W-isotope composition of terrestrial rocks, representing the bulk silicate Earth, is homogeneous and 2.24 ε182W units more radiogenic than that of the bulk Earth, metal/silicate differentiation of the Earth occurred very early. The new W-isotope data constrain the mean time of terrestrial core formation to 34 million years after the start of solar system accretion. Early terrestrial core formation implies rapid terrestrial accretion, thus permitting formation of the Moon by giant impact while 182Hf was still alive. This could explain why lunar W-isotopes are more radiogenic than the terrestrial value.  相似文献   
763.
764.
765.
High-frequency (≥2 Hz) Rayleigh wave phase velocities can be inverted to shear (S)-wave velocities for a layered earth model up to 30 m below the ground surface in many settings. Given S-wave velocity (VS), compressional (P)-wave velocity (VP), and Rayleigh wave phase velocities, it is feasible to solve for P-wave quality factor QP and S-wave quality factor QS in a layered earth model by inverting Rayleigh wave attenuation coefficients. Model results demonstrate the plausibility of inverting QS from Rayleigh wave attenuation coefficients. Contributions to the Rayleigh wave attenuation coefficients from QP cannot be ignored when Vs/VP reaches 0.45, which is not uncommon in near-surface settings. It is possible to invert QP from Rayleigh wave attenuation coefficients in some geological setting, a concept that differs from the common perception that Rayleigh wave attenuation coefficients are always far less sensitive to QP than to QS. Sixty-channel surface wave data were acquired in an Arizona desert. For a 10-layer model with a thickness of over 20 m, the data were first inverted to obtain S-wave velocities by the multichannel analysis of surface waves (MASW) method and then quality factors were determined by inverting attenuation coefficients.  相似文献   
766.
Paleomagnetic studies have shown that, moving backwards in time, the geomagnetic dipole moment increased to a peak nearly 50% greater than at present ca. 2500 years ago. Attempts to model how changes in dipole moment affect solar–terrestrial relations have hitherto invoked a scaling relation for the size of the magnetosphere based on finding where the magnetic pressure of the dipole field balances the ram pressure of the solar wind. This approach predicts that, following a solar storm, the strength of the terrestrial response represented by the electrical potential across the auroral zones in the ionosphere should vary as the 1/3 power of dipole moment. Such a weak dependence suggests that a 50% increase in dipole moment would minimally effect (14%) terrestrial manifestations of solar storms. Recent work, however, based on a feedback mechanism involving electrical currents coupling the magnetosphere and ionosphere has identified a stronger 4/3, power scaling relation applicable to storm conditions. Here we use a global MHD simulation to calculate for a 50% increased dipole moment the correspondingly increased auroral-zone potential and its extension to low latitudes.  相似文献   
767.
Little is known about centennial- to millennial-scale climate variability during interglacial times, other than the Holocene. We here present high-resolution evidence from anoxic (unbioturbated) sediments in the eastern Mediterranean Sea that demonstrates a sustained ∼800-yr climate disturbance in the monsoonal latitudes during the Eemian interglacial maximum (∼125 ka BP). Results imply that before and after this event, the Intertropical Convergence Zone (ITCZ) penetrated sufficiently beyond the central Saharan watershed (∼21°N) during the summer monsoon to fuel flooding into the Mediterranean along the wider North African margin, through fossil river/wadi systems that to date have been considered only within a Holocene context. Relaxation in the ITCZ penetration during the intra-Eemian event curtailed this flux, but flow from the Nile - with its vast catchment area - was not affected. Previous work suggests a concomitant Eurasian cooling event, with intensified impact of the higher-latitude climate on the Mediterranean basin. The combined signals are very similar to those described for the Holocene cooling event around 8 ka BP. The apparent type of concurrent changes in the monsoon and higher-latitude climate may reflect a fundamental mechanism for variability in the transfer of energy (latent heat) between the tropics and higher latitudes.  相似文献   
768.
Spatial variation of earthquake ground motion is an important phenomenon that cannot be ignored in the design and safety of strategic structures. Several models have been developed to describe this variation using statistical, mathematical or physical approaches. The latter approach is not specific to an event. A recent contribution, which uses such an approach and called complete stochastic deamplification approach (CSDA), was developed [1]. The aim of this paper is to analyze the spatial variation of earthquake motion induced by the propagation of body waves using the CSDA. Coherency functions are evaluated for the cases of SH–SV–P waves propagating through stratified soil. Results obtained show that the variation of the coherency function is not the same for vertical and horizontal components and that the motion is more coherent at depth than at the free surface. In fact, we found that the rate of decrease with frequency and distance is not the same if P–SV waves propagate through stratified soil.  相似文献   
769.
We have determined the production yields for radionuclides in Al2O3, SiO2, S, Ar, K2SO4, CaCO3, Fe, Ni and Cu targets, which were irradiated with slow negative muons at the Paul Scherrer Institute in Villigen (Switzerland). The fluences of the stopped negative muons were determined by measuring the muonic X-rays. The concentrations of the long-lived and short-lived radionuclides were measured with accelerator mass spectrometry (AMS) and γ-spectroscopy, respectively. Special emphasis was put on the radionuclides 10Be, 14C and 26Al produced in quartz targets, 26Al in Al2O3 and S targets, 36Cl in K2SO4 and CaCO3 targets, and 53Mn in Fe2O3 targets. These targets were selected because they are also the naturally occurring target minerals for cosmic ray interactions in typical rocks. We also present results of calculations for depth-dependent production rates of radionuclides produced after cosmic ray μ capture, as well as cosmic ray-induced production rates of geologically relevant radionuclides produced by the nucleonic component, by μ capture, by fast muons and by neutron capture.  相似文献   
770.
We present a detailed analysis of the Sint-800 virtual axial dipole moment (VADM) data in terms of an Ω mean field model of the geodynamo that features a non-steady generation of poloidal from toroidal magnetic field. The result is a variable excitation of the dipole mode and the overtones, and there are occasional dipole reversals. The model permits a theoretical evaluation of the statistical properties of the dipole mode. We show that the model correctly predicts the distribution of the VADM and the autocorrelation function inferred from the Sint-800 data. The autocorrelation technique allows us to determine the turbulent diffusion time τd=R2/β of the geodynamo. We find that τd is about 10–15 kyr. The model is able to reproduce the observed secular variation of the dipole mode, and the mean time between successive dipole reversals. On the other hand, the duration of a reversal is a factor 2 too long. This could be due to imperfections in the model or to unknown systematics in the Sint-800 data. The use of mean field theory is shown to be selfconsistent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号