首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118090篇
  免费   2105篇
  国内免费   1661篇
测绘学   3704篇
大气科学   9050篇
地球物理   23832篇
地质学   42585篇
海洋学   9584篇
天文学   23011篇
综合类   2321篇
自然地理   7769篇
  2021年   688篇
  2020年   825篇
  2019年   892篇
  2018年   6113篇
  2017年   5364篇
  2016年   4627篇
  2015年   1674篇
  2014年   2262篇
  2013年   4820篇
  2012年   3237篇
  2011年   5873篇
  2010年   4915篇
  2009年   6372篇
  2008年   5488篇
  2007年   5728篇
  2006年   3588篇
  2005年   3213篇
  2004年   3444篇
  2003年   3264篇
  2002年   3005篇
  2001年   2494篇
  2000年   2448篇
  1999年   2042篇
  1998年   2068篇
  1997年   2012篇
  1996年   1752篇
  1995年   1665篇
  1994年   1511篇
  1993年   1379篇
  1992年   1315篇
  1991年   1170篇
  1990年   1367篇
  1989年   1211篇
  1988年   1110篇
  1987年   1317篇
  1986年   1191篇
  1985年   1457篇
  1984年   1650篇
  1983年   1543篇
  1982年   1428篇
  1981年   1431篇
  1980年   1210篇
  1979年   1168篇
  1978年   1180篇
  1977年   1121篇
  1976年   1036篇
  1975年   978篇
  1974年   971篇
  1973年   986篇
  1972年   611篇
排序方式: 共有10000条查询结果,搜索用时 765 毫秒
91.
Measurements of 18O concentrations in precipitation, soil solution, spring and runoff are used to determine water transit time in the small granitic Strengbach catchment (0·8 km2; 883–1146 m above sea level) located in the Vosges Mountains of northeastern France. Water transit times were calculated by applying the exponential, exponential piston and dispersion models of the FlowPC program to isotopic input (rainfall) and output (spring and stream water) data sets during the period 1989–95. The input function of the model was modified compared with the former version of the model and estimated by a deterministic approach based on a simplified hydrological balance. The fit between observed and calculated output data showed marked improvements compared with results obtained using the initial version of the model. An exponential piston version of the model applied to spring water indicates a 38·5 month mean transit time, which suggests that the volume in the aquifer, expressed in water depth, is 2·4 m. A considerable thickness (>45 m) of fractured bedrock may be involved for such a volume of water to be stored in the aquifer. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
92.
We develop a new method to estimate the redshift of galaxy clusters through resolved images of the Sunyaev–Zel'dovich effect (SZE). Our method is based on morphological observables which can be measured by actual and future SZE experiments. We test the method with a set of high-resolution hydrodynamical simulations of galaxy clusters at different redshifts. Our method combines the observables in a principal component analysis. After calibrating the method with an independent redshift estimation for some of the clusters, we show – using a Bayesian approach – how the method can give an estimate of the redshift of the galaxy clusters. Although the error bars given by the morphological redshift estimation are large, it should be useful for future SZE surveys where thousands of clusters are expected to be detected; a first preselection of the high-redshift candidates could be done using our proposed morphological redshift estimator. Although not considered in this work, our method should also be useful to give an estimate of the redshift of clusters in X-ray and optical surveys.  相似文献   
93.
94.
S.J Weidenschilling 《Icarus》2003,165(2):438-442
For standard cosmic abundances of heavy elements, a layer of small particles in the central plane of the solar nebula cannot attain the critical density for gravitational instability. Youdin and Shu (2002, Astrophys. J. 580, 494-505) suggest that the local surface density of solids can be enhanced by radial migration of particles due to gas drag. However, they consider only motions of individual particles. Collective motion due to turbulent stress on the particle layer acts to inhibit such enhancement and may prevent gravitational instability.  相似文献   
95.
96.
Green Lake Landslide is an ancient giant rock slide in gneiss and granodiorite located in the deeply glaciated Fiordland region of New Zealand. The landslide covers an area of 45 km2 and has a volume of about 27 km3. It is believed to be New Zealand's largest landslide, and possibly the largest landslide of its type on Earth. It is one of 39 known very large (106–107 m3) and giant (≥108 m3) postglacial landslides in Fiordland discussed in the paper. Green Lake Landslide resulted in the collapse of a 9 km segment of the southern Hunter Mountains. Slide debris moved up to 2.5 km laterally and 700 m vertically, and formed a landslide dam about 800 m high, impounding a lake about 11 km long that was eventually infilled with sediments. Geomorphic evidence supported by radiocarbon dating indicates that Green Lake Landslide probably occurred 12 000–13 000 years ago, near the end of the last (Otira) glaciation. The landslide is described, and its geomorphic significance, age, failure mechanism, cause, and relevance in the region are discussed, in relation to other large landslides and recent earthquake-induced landslides in Fiordland. The slope failure occurred on a low-angle fault zone undercut by glacial erosion, and was probably triggered by strong shaking (MM IX–X) associated with a large (≥ M 7.5–8) earthquake, on the Alpine Fault c. 80 km to the northwest. Geology was a major factor that controlled the style and size of Green Lake landslide, and in that respect it is significantly different from most other gigantic landslides. Future large earthquakes on the Alpine Fault in Fiordland are likely to trigger more very large and giant landslides across the region, causing ground damage and devastation on a scale that has not occurred during the last 160 years, with potentially disastrous effects on towns, tourist centres, roads, and infrastructure. The probability of such an event occurring within the next 50 years may be as high as 45%.  相似文献   
97.
Photographic spectra of SN1987A in the LMC have been obtained from 1987 February 25 to 1988 June 30. Microdensitometer tracings of these have been reduced to intensity and corrections for instrumental response have been applied to the spectra. This paper presents these data in an atlas format, discusses the reduction procedures in detail, and presents radial velocity measurements of selected lines in the spectra  相似文献   
98.
An introduction to Maslov's asymptotic method   总被引:3,自引:0,他引:3  
Summary. Familiar concepts such as asymptotic ray theory and geometrical spreading are now recognized as an asymptotic form of a more general asymptotic solution to the non-separable wave equation. In seismology, the name Maslov asymptotic theory has been attached to this solution. In its simplest form, it may be thought of as a justification of disc-ray theory and it can be reduced to the WKBJ seismogram. It is a uniformly valid asymptotic solution, though. The method involves properties of the wavefronts and ray paths of the wave equation which have been established for over a century. The integral operators which build on these properties have been investigated only comparatively recently. These operators are introduced very simply by appealing to the asymptotic Fourier transform of Ziolkowski & Deschamps. This leads quite naturally to the result that phase functions in different domains of the spatial Fourier transform are related by a Legendre transformation. The amplitude transformation can also be inferred by this method. Liouville's theorem (the incompressibility of a phase space of position and slowness) ensures that it is always possible to obtain a uniformly asymptotic solution. This theorem can be derived by methods familiar to seismologists and which do not rely on the traditional formalism of classical mechanics. It can also be derived from the sympletic property of the equations of geometrical spreading and canonical transformations in general. The symplectic property plays a central role in the theory of high-frequency beams in inhomogeneous media.  相似文献   
99.
Approach to Mountain Hazards in Tibet, China   总被引:1,自引:1,他引:0  
Tibet is located at the southwest boundary of China. It is the main body of the Qinghai-Tibet Plateau, the highest and the youngest plateau in the world. Owing to complicated geology, Neo-tectonic movements, geomorphology, climate and plateau environment, various mountain hazards, such as debris flow, flash flood, landslide, collapse, snow avalanche and snow drifts, are widely distributed along the Jinsha River (the upper reaches of the Yangtze River), the Nu River and the Lancang River in the east, and the Yarlungzangbo River, the Pumqu River and the Poiqu River in the south and southeast of Tibet. The distribution area of mountain hazards in Tibet is about 589,000 km^2, 49.3% of its total territory. In comparison to other mountain regions in China, mountain hazards in Tibet break out unexpectedly with tremendously large scale and endanger the traffic lines, cities and towns, farmland, grassland, mountain environment, and make more dangers to the neighboring countries, such as Nepal, India, Myanmar and Bhutan. To mitigate mountain hazards, some suggestions are proposed in this paper, such as strengthening scientific research, enhancing joint studies, hazards mitigation planning, hazards warning and forecasting, controlling the most disastrous hazards and forbidding unreasonable human exploring activities in mountain areas.  相似文献   
100.
Extraterrestrial geography has become a reality, as we move from Earth's moon to the planets. A broad-scale regional physiography is being established on twenty planets and satellites through remote sensing techniques. Spacecraft images yield most of the information on Solar System landscapes. Topographic measurements are extracted by monoscopic image-processing, stereophotogrammetry, and radar analysis. Invisible parts of the spectrum furnish non-topographic data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号