首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   1篇
测绘学   1篇
大气科学   15篇
地球物理   12篇
地质学   25篇
海洋学   3篇
天文学   8篇
自然地理   11篇
  2017年   2篇
  2015年   3篇
  2014年   3篇
  2013年   3篇
  2012年   1篇
  2011年   7篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   5篇
  2002年   2篇
  2000年   3篇
  1999年   3篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   2篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1973年   1篇
  1970年   1篇
  1959年   1篇
  1956年   1篇
  1952年   1篇
  1927年   1篇
排序方式: 共有75条查询结果,搜索用时 15 毫秒
11.
In a companion paper, an overview and problem definition was presented for ground motion selection on the basis of the conditional spectrum (CS), to perform risk‐based assessments (which estimate the annual rate of exceeding a specified structural response amplitude) for a 20‐story reinforced concrete frame structure. Here, the methodology is repeated for intensity‐based assessments (which estimate structural response for ground motions with a specified intensity level) to determine the effect of conditioning period. Additionally, intensity‐based and risk‐based assessments are evaluated for two other possible target spectra, specifically the uniform hazard spectrum (UHS) and the conditional mean spectrum (CMS, without variability).It is demonstrated for the structure considered that the choice of conditioning period in the CS can substantially impact structural response estimates in an intensity‐based assessment. When used for intensity‐based assessments, the UHS typically results in equal or higher median estimates of structural response than the CS; the CMS results in similar median estimates of structural response compared with the CS but exhibits lower dispersion because of the omission of variability. The choice of target spectrum is then evaluated for risk‐based assessments, showing that the UHS results in overestimation of structural response hazard, whereas the CMS results in underestimation. Additional analyses are completed for other structures to confirm the generality of the conclusions here. These findings have potentially important implications both for the intensity‐based seismic assessments using the CS in future building codes and the risk‐based seismic assessments typically used in performance‐based earthquake engineering applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
12.
13.
14.
15.
Instructions for construction and use of a simple and inexpensive sediment coring device are presented. The sampler is suitable for use in high school and undergraduate science courses.  相似文献   
16.
Climate change impacts on U.S. Coastal and Marine Ecosystems   总被引:1,自引:0,他引:1  
Increases in concentrations of greenhouse gases projected for the 21st century are expected to lead to increased mean global air and ocean temperatures. The National Assessment of Potential Consequences of Climate Variability and Change (NAST 2001) was based on a series of regional and sector assessments. This paper is a summary of the coastal and marine resources sector review of potential impacts on shorelines, estuaries, coastal wetlands, coral reefs, and ocean margin ecosystems. The assessment considered the impacts of several key drivers of climate change: sea level change; alterations in precipitation patterns and subsequent delivery of freshwater, nutrients, and sediment; increased ocean temperature; alterations in circulation patterns; changes in frequency and intensity of coastal storms; and increased levels of atmospheric CO2. Increasing rates of sea-level rise and intensity and frequency of coastal storms and hurricanes over the next decades will increase threats to shorelines, wetlands, and coastal development. Estuarine productivity will change in response to alteration in the timing and amount of freshwater, nutrients, and sediment delivery. Higher water temperatures and changes in freshwater delivery will alter estuarine stratification, residence time, and eutrophication. Increased ocean temperatures are expected to increase coral bleaching and higher CO2 levels may reduce coral calcification, making it more difficult for corals to recover from other disturbances, and inhibiting poleward shifts. Ocean warming is expected to cause poleward shifts in the ranges of many other organisms, including commercial species, and these shifts may have secondary effects on their predators and prey. Although these potential impacts of climate change and variability will vary from system to system, it is important to recognize that they will be superimposed upon, and in many cases intensify, other ecosystem stresses (pollution, harvesting, habitat destruction, invasive species, land and resource use, extreme natural events), which may lead to more significant consequences.  相似文献   
17.
An atmospheric general circulation model is run with boundary conditions representing different amounts of equator-to-pole oceanic heat transport. Oceanic heat transport underneath sea ice is held fixed, minimizing positive feedbacks due to sea ice and thereby providing a lower bound on the effects of oceanic heat transport on climate. When oceanic heat transport is reduced, some compensating increases in atmospheric heat transport occur, but tropical surface temperatures increase and atmospheric circulation and precipitation patterns undergo significant changes. We conclude that the ability of the oceans to generate past and future climatic changes through transport of heat is substantial, even though it is limited by a tendency of the atmosphere to partly compensate for changes in oceanic heat transport.  相似文献   
18.
Sediment traps were used to evaluate the frequency, cause, and relative intensity of sediment mobility/resuspension along the fringing coral reef off southern Molokai (February 2000-May 2002). Two storms with high rainfall, floods, and exceptionally high waves resulted in sediment collection rates>1000 times higher than during non-storm periods, primarily because of sediment resuspension by waves. Based on quantity and composition of trapped sediment, floods recharged the reef flat with land-derived sediment, but had a low potential for burying coral on the fore reef when accompanied by high waves. The trapped sediments have low concentrations of anthropogenic metals. The magnetic properties of trapped sediment may provide information about the sources of land-derived sediment reaching the fore reef. The high trapping rate and low sediment cover indicate that coral surfaces on the fore reef are exposed to transient resuspended sediment, and that the traps do not measure net sediment accumulation on the reef surface.  相似文献   
19.
Terrigenous sediment in the nearshore environment can pose both acute and chronic stresses to coral reefs. The reef flat off southern Molokai, Hawaii, typically experiences daily turbidity events, in which trade winds and tides combine to resuspend terrigenous sediment and transport it alongshore. These chronic turbidity events could play a role in restricting coral distribution on the reef flat by reducing the light available for photosynthesis. This study describes the effects of these turbidity events on the Hawaiian reef coral Montipora capitata using in situ diurnal measurements of turbidity, light levels, and chlorophyll fluorescence yield via pulse-amplitude-modulated (PAM) fluorometry. Average surface irradiance was similar in the morning and the afternoon, while increased afternoon turbidity resulted in lower subsurface irradiance, higher fluorescence yield (ΔF/Fm), and lower relative electron transport rates (rETR). Model calculations based on observed light extinction coeffecients suggest that in the absence of turbidity events, afternoon subsurface irradiances would be 1.43 times higher than observed, resulting in rETR for M. capitata that are 1.40 times higher.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号