The distributions of phenylphenanthrenes, phenylanthracenes and binaphthyls in sediment extracts have been investigated in a set of lacustrine shales from the Eocene Shahejie Formation (well SG 1) in the western Depression of Liaohe Basin, East China. All isomers of these phenyl substituted polycyclic aromatic hydrocarbons (PAHs) have been identified in the m/z 254 mass chromatograms by comparison of the mass spectra and standard retention indices with those published elsewhere. The 2,2′-binaphtyl/1,2′-binaphthyl ratio values show a linear increase with increasing maturity, and have a good correlation with Tmax (°C). Therefore, they can be used as an effective maturity indictor for source rocks in this study. In the main phase of the oil generation window, the 3-phenylphenanthrene and 2-phenylphenanthrene prevail over other isomers, and some thermodynamically unstable isomers including all phenylanthracenes, 4-phenylphenanthrene and 1,1′-binaphthyl are present at very low concentrations or below the detection limit in the m/z 254 mass chromatograms. The absolute concentrations of individual phenylphenanthrene and binaphthyl isomers were obtained by comparison of the peak areas with that of internal standard phenanthrene-d10. All isomers are present at low concentrations at low maturity stages and then show an abrupt increase at a depth of ≈3100 m, corresponding to the onset of the intensive C15+ hydrocarbon generation. The Phenylphenanthrene Ratio (2- + 3-PhP)/[(2- + 3-PhP) + (4- + 1- + 9-PhP)] shows a reverse change with increasing maturity at the low maturity stage. It displays a drastic increase at a depth of ≈3100 m and then remains at a nearly constant value. This study can expand the understanding of the formation and distribution of phenyl substituted PAHs in sedimentary organic matter deposited in various environments. 相似文献
Natural Hazards - A gentle bedding slope (16° dip angle) failure at Sanxicun (SXC) village in Dujiangyan city was triggered by heavy rainfall in 2013. The landslide has a sliding distance of... 相似文献
In this study, the effects of salinity of infiltrating solutions on the swelling strain, compressibility, and hydraulic conductivity of compacted GMZ01 Bentonite were investigated. After swelling under vertical load using either distilled water or NaCl solutions with concentrations of 0.1, 0.5 M, and 1 M, laboratory oedometer tests were conducted on the compacted GMZ01 Bentonite. Based on the oedometer test results, hydraulic conductivity was determined using the Casagrande’s method. Results show that the swelling strain of highly compacted GMZ01 Bentonite decreases as the concentration of NaCl solution increases. The compression index Cc* increases and then turns to decrease with an increase in the vertical stress or a decrease in the void ratio for different solutions, and the Cc* decreases as the concentration of NaCl solution increases. The secondary consolidation coefficient Cα increases linearly with the increase of the compression index Cc*. Furthermore, a bi-linear relationship between the swelling index Cs* and the secondary consolidation coefficient Cα can be characterized clearly. The hydraulic conductivity increases as the concentration of NaCl solution increases, however, this increase can be prevented if a high confining stress is applied. 相似文献
Most of water inrush incidents in coalmines are originally derived from a seepage flow through rock mass fractures, particularly in fault zones. Water inrush is typically caused by hydromechanical coupling interactions induced by human activities. Taking the Zhaogezhuang coalmine in northern China as an example, the progress of a lagging water inrush, which occurred at a depth of about ?1,100 m, was simulated and analyzed based on the hydromechanical coupling mechanism. A 3D model incorporating the main structures of the study area was constructed based on the geological data and field investigation. The equivalent continuum medium was employed to describe fault zones. Processes of determining the mechanical, rheological and hydraulic parameters are discussed in details. Three hydromechanical coupling models are applied: (1) the elastoplastic strain-fluid coupling mechanism in rock mass within the fault zone, (2) the inelastic creep-fluid coupling mechanism in rock materials within the fault gouge, and (3) the stress-permeability coupling mechanism in the fractured porous rocks. The evolution of water-recharge zones along the fault zone was presented in different mining phases. By comparing the simulated pore pressures with the in situ monitored ones, the following conclusions can be drawn: (1) the actual hydraulic behaviors are a combination of the long-term trends and short-term effects; (2) the creep-fluid coupling model reflects the rock hydraulic behaviors of long-term trends, while the elastoplastic strain-fluid coupling model demonstrates the short-term effects; (3) a prediction method called ‘time window’ for the risk of the lagging water inrush is proposed. Its feasibility is discussed. 相似文献
It is important for both current monitoring and paleoenvironmental research conducted on proglacial lakes and their adjacent glaciers to clarify the hydrological processes operating on these lakes. However, in remote regions with limited accessibility it may be difficult to study hydrological processes by direct monitoring. In this study, we use measurements of stable isotopic compositions to trace the multiple water sources contributing to Ranwu Lake, a proglacial lake in south-eastern Tibet. Using stable isotopic data from precipitation, inflowing rivers and the lake water, a water and isotope mass balance modelling method was used to calculate the ratio of evaporation to input. Subsequently, using hydrological and climatic data for the outflow, the largest inflow and precipitation, other hydrological elements of the lake water balance were also calculated. The results demonstrate that the ratio of evaporation to inflow is as low as 0.009, the lowest value observed for the Tibetan Plateau, indicating that Ranwu Lake is a through-flow lake with a very short retention time. Glacial meltwater accounts for at least 55% of total runoff, the highest value observed for the Tibetan Plateau, indicating that the sediments of Ranwu Lake may have considerable potential for reconstructing variations in the activity of the local glaciers. Finally, we note that it may be inappropriate in this glacier-fed lake to use the intersection of the local meteoric water line with the lake water line for determining the isotopic composition of the input water, and this possibility must be carefully considered when stable isotope mass modelling is used in proglacial lakes. 相似文献
Brinell indentation tests were performed on Montney siltstone, and the results were compared with discrete element indentation simulations that use the micro-parameters calibrated using compression test data from the same siltstone samples. The simulated proppant indentation into the rock surface can be 15% less than the laboratory measurements. A lower effective particle–particle modulus and thus a lower Young’s modulus are needed in discrete element models for proper simulation of indentation. An equation to find the appropriate value of Young’s modulus for indentation simulation is proposed using Brinell indentation tests including 198 laboratory tests and 32 discrete element simulations. This equation can improve the prediction of Young’s modulus and thus the particle–particle effective modulus for indentation simulations to match the measured force–indentation depth curve in the laboratory. Using the improved micro-parameters, a parametric analysis of the influence of rock Young’s modulus and proppant particle size on proppant embedment was performed. An equation to estimate Brinell hardness as a function of Young’s modulus and closure stress was derived. A practical procedure was developed to predict proppant embedment from the estimated hardness. The predictions agree with the laboratory measurements in a case study on the Montney Formation.