首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6022篇
  免费   1193篇
  国内免费   1677篇
测绘学   536篇
大气科学   1076篇
地球物理   1520篇
地质学   3349篇
海洋学   928篇
天文学   157篇
综合类   632篇
自然地理   694篇
  2024年   16篇
  2023年   101篇
  2022年   239篇
  2021年   284篇
  2020年   235篇
  2019年   273篇
  2018年   321篇
  2017年   285篇
  2016年   313篇
  2015年   335篇
  2014年   383篇
  2013年   395篇
  2012年   471篇
  2011年   464篇
  2010年   508篇
  2009年   477篇
  2008年   426篇
  2007年   408篇
  2006年   382篇
  2005年   311篇
  2004年   292篇
  2003年   232篇
  2002年   196篇
  2001年   201篇
  2000年   209篇
  1999年   191篇
  1998年   144篇
  1997年   157篇
  1996年   112篇
  1995年   99篇
  1994年   85篇
  1993年   68篇
  1992年   60篇
  1991年   50篇
  1990年   42篇
  1989年   29篇
  1988年   24篇
  1987年   20篇
  1986年   17篇
  1985年   8篇
  1984年   5篇
  1983年   6篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1968年   1篇
  1958年   4篇
  1954年   4篇
排序方式: 共有8892条查询结果,搜索用时 46 毫秒
911.
Zhao  N. F.  Ye  W. M.  Chen  B.  Chen  Y. G.  Cui  Y. J. 《Acta Geotechnica》2019,14(5):1325-1335
Acta Geotechnica - This paper presents a constitutive model for simulating the swelling–shrinkage volume change of expansive soils during wetting–drying cycles. Based on the concept of...  相似文献   
912.
Abstract

The mechanical characteristics of calcareous silt interlayers play an important role in the stability of island-reef foundations. Direct shear and consolidation tests were performed to study the relationship between the mechanical properties and the physical parameters of calcareous silt. Based on the consolidation test results and analysis of the settling examples, different calculation methods for soil settling were compared. The results show the following. (1) The relationship between the cohesion and water content of calcareous silt can be represented by an M-shaped curve. The water contents corresponding to the two peaks of the M-type curve increase with increasing dry density. (2) When the dry density is less than 1.33?g/cm3, increasing the density significantly improves the internal friction angle of calcareous silts. When the dry density of the calcareous silt is greater than 1.33?g/cm3, the internal friction angle is affected by both the dry density and the water content. (3) The shear strength decreases when the water content exceeds the optimum level. (4) The compressive modulus of calcareous silt is larger than that of terrigenous silt. Specifically, it decreases with decreasing dry density and increasing water content. (5) The stepwise loading method should be used to estimate the soil settling before fill engineering construction.  相似文献   
913.
To enhance the utilization efficiency of farmland irrigation water and reduce the leakage of water conveyance channels, the leakage process of channels was simulated dynamically. The simulated results were compared with data measured in laboratory experiments, and the performance of the model was evaluated. The results indicated that the simulated values of the model were consistent with the observation values, and the R2 values varied between 0.91 and 0.99. In addition, based on the laboratory experiments, a water supply system (Mariotte bottles) and soil box were built using plexiglass. Three influencing factors, namely, the channel form, soil texture and channel cross-sectional area, were varied to observe and calculate the resulting cumulative infiltration amount, infiltration rate and wetting front migration distance. HYDRUS-3D software was used to solve the three-dimensional soil water movement equation under different initial conditions. The results demonstrated that the U-shaped channel was more effective than the trapezoidal channel in increasing the utilization efficiency of the water resources. A U-shaped channel with a small channel cross-sectional area should be adopted and the soil particle size should be prioritized in the construction of water conveyance channels for farmlands. The simulation results were in agreement with the observed results, which indicates that HYDRUS-3D is a reliable tool that can accurately simulate the soil moisture movement in water conveyance channels. The research results can provide a reference for the design and operation of farmland irrigation systems.  相似文献   
914.
ABSTRACT

Effective public transit planning needs to address realistic travel demands, which can be illustrated by corridors across major residential areas and activity centers. It is vital to identify public transit corridors that contain the most significant transit travel demand patterns. We propose a two-stage approach to discover primary public transit corridors at high spatio-temporal resolutions using massive real-world smart card and bus trajectory data, which manifest rich transit demand patterns over space and time. The first stage was to reconstruct chained trips for individual passengers using multi-source massive public transit data. In the second stage, a shared-flow clustering algorithm was developed to identify public transit corridors based on reconstructed individual transit trips. The proposed approach was evaluated using transit data collected in Shenzhen, China. Experimental results demonstrated that the proposed approach is a practical tool for extracting time-varying corridors for many potential applications, such as transit planning and management.  相似文献   
915.
Mountain and lowland watersheds are two distinct geographical units with considerably different hydrological processes. Understanding their hydrological processes in the context of future climate change and land use scenarios is important for water resource management. This study investigated hydrological processes and their driving factors and eco-hydrological impacts for these two geographical units in the Xitiaoxi watershed, East China, and quantified their differences through hydrological modelling. Hydrological processes in 24 mountain watersheds and 143 lowland watersheds were simulated based on a raster-based Xin'anjiang model and a Nitrogen Dynamic Polder (NDP) model, respectively. These two models were calibrated and validated with an acceptable performance (Nash-Sutcliffe efficiency coefficients of 0.81 and 0.50, respectively) for simulating discharge for mountain watersheds and water level for lowland watersheds. Then, an Indicators of Hydrological Alteration (IHA) model was used to help quantify the alterations to the hydrological process and their resulting eco-hydrological impacts. Based on the validated models, scenario analysis was conducted to evaluate the impacts of climate and land use changes on the hydrological processes. The simulation results revealed that (a) climate change would cause a larger increase in annual runoff than that under land use scenario in the mountain watersheds, with variations of 19.9 and 10.5% for the 2050s, respectively. (b) Land use change was more responsible for the streamflow increment than climate change in the lowland watersheds, causing an annual runoff to increase by 27.4 and 16.2% for the 2050s, respectively. (c) Land use can enhance the response of streamflow to the climatic variation. (d) The above-mentioned hydrological variations were notable in flood and dry season in the mountain watersheds, and they were significant in rice season in the lowland watersheds. (e) Their resulting degradation of ecological diversity was more susceptible to future climate change in the two watersheds. This study demonstrated that mountain and lowland watersheds showed distinct differences in hydrological processes and their responses to climate and land use changes.  相似文献   
916.
In this study, we examined the year 2011 characteristics of energy flux partitioning and evapotranspiration of a sub‐alpine spruce forest underlain by permafrost on the Qinghai–Tibet Plateau (QPT). Energy balance closure on a half‐hourly basis was H + λE = 0.81 × (Rn ? G ? S) + 3.48 (W m?2) (r2 = 0.83, n = 14938), where H, λE, Rn, G and S are the sensible heat, latent heat, net radiation, soil heat and air‐column heat storage fluxes, respectively. Maximum H was higher than maximum λE, and H dominated the energy budget at midday during the whole year, even in summer time. However, the rainfall events significantly affected energy flux partitioning and evapotranspiration. The mean value of evaporative fraction (Λ = λE/(λE + H)) during the growth period on zero precipitation days and non‐zero precipitation days was 0.40 and 0.61, respectively. The mean daily evapotranspiration of this sub‐alpine forest during summer time was 2.56 mm day?1. The annual evapotranspiration and sublimation was 417 ± 8 mm year?1, which was very similar to the annual precipitation of 428 mm. Sublimation accounted for 7.1% (30 ± 2 mm year?1) of annual evapotranspiration and sublimation, indicating that the sublimation is not negligible in the annual water balance in sub‐alpine forests on the QPT. The low values of the Priestley–Taylor coefficient (α) and the very low value of the decoupling coefficient (Ω) during most of the growing season suggested low soil water content and conservative water loss in this sub‐alpine forest. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
917.
The longitudinal functional connectivity of a river–lake–marsh system (RLMS) refers to the actual water-mediated transport of material from upstream to downstream areas along a spatial gradient and is fundamental to understand hydrological and biogeochemical cycles. However, due to a lack of consensus on appropriate data and methods, the quantification of connectivity is still a challenge, especially at the catchment scale. We developed a new method to evaluate longitudinal functional connectivity based on fluxes of materials (water, sediment, and chemicals) along a RLMS. The calculation of fluxes is based on the longitudinal pattern of terrain gradient, which influences transport efficiency, and on contributions from hillslopes, which set the initial spatial template of material loading to the RLMS. We evaluate the contributions from hillslopes to RLMS based on a new modified version of the index of sediment connectivity (IC) proposed by Borselli et al. (2008) and revised by Chartin et al. (2017).We applied this method to the Baiyangdian Basin covering an area of 3.4 × 104 km2 in China and quantified longitudinal functional connectivity during normal, wet, and dry periods(April, July and December) in year 2016. We found that areas with good structural connectivity exhibited poor functional connectivity during the normal and dry periods. Modelling testing with discharge data from hydrological stations and measured chemicals from Baiyangdian Lake was satisfactory in test periods. We conclude that public data and Digital Elevation Model-derived information can be used to reliably map the longitudinal functional connectivity of RLMSs. The proposed method provides a useful tool for monitoring and restoring the longitudinal functional connectivity of RLMSs and our results indicate that efforts aimed at restoring functional connectivity in RLMSs should take into account landscape patterns that can greatly influence fluxes in the watershed.  相似文献   
918.
Cheng  Zhiheng  Pan  Hui  Zou  Quanle  Li  Zhenhua  Chen  Liang  Cao  Jialin  Zhang  Kun  Cui  Yongguo 《Natural Resources Research》2021,30(2):1481-1493

With increasing demands for coal resources, coal has been gradually mined in deep coal seams. Due to high gas content, pressure and in situ stress, deep coal seams show great risks of coal and gas outburst. Protective coal seam mining, as a safe and effective method for gas control, has been widely used in major coal-producing countries in the world. However, at present, the relevant problems, such as gas seepage characteristics and optimization of gas drainage borehole layout in protective coal seam mining have been rarely studied. Firstly, by combining with formulas for measuring and testing permeability of coal and rock mass in different stress regimes and failure modes in the laboratory, this study investigated stress–seepage coupling laws by using built-in language Fish of numerical simulation software FLAC3D. In addition, this research analyzed distribution characteristics of permeability in a protected coal seam in the process of protective coal seam mining. Secondly, the protected coal seam was divided into a zone with initial permeability, a zone with decreasing permeability, and permeability increasing zones 1 and 2 according to the changes of permeability. In these zones, permeability rises the most in the permeability increasing zone 2. Moreover, by taking Shaqu Coal Mine, Shanxi Province, China as an example, layout of gas drainage boreholes in the protected coal seam was optimized based on the above permeability-based zoning. Finally, numerical simulation and field application showed that gas drainage volume and concentration rise significantly after optimizing borehole layout. Therefore, when gas is drained through boreholes crossing coal seams during the protective coal seam mining in other coal mines, optimization of borehole layout in Shaqu Coal Mine has certain reference values.

  相似文献   
919.
以中国东北赤峰市美林地区5种典型优势树种为研究对象,采用与当地森林植被生长期相对应的5景Senti-nel-2影像,借助支持向量机模型(SVM)与递归特征消除算法(RFE),根据可见光-近红外波段(VNIR)与不同红边谱段(RE)及红边指数(REVI)组合条件下的森林优势树种可分性测度及结果精度差异,探讨Sentinel-2影像不同红边谱段及其指数特征对区域优势树种遥感识别的影响.结果表明:Sentinel-2影像红边谱段的不同组合方式对不同生长期优势树种识别影响存在显著差异(P<0.05),其中VNIR+B5+B6为生长盛期的最佳组合方式,能够在VNIR基础上将生长盛期的识别精度均值提升约7.71%;叶全变色期是进行优势树种识别的最佳时期(P<0.05),该时期基于VNIR波段的识别精度均值达71.28%,在叠加红边波段B5+B6后提升至75.41%.此外,采用SVM-RFE算法构建适用于不同生长期的最佳REVI组合,其平均识别精度能够在全年5个生长期达到72.00%~84.31%,相比同时期基于RE+VNIR组合的最优识别结果平均提升了10.77%;在此基础上,构建适用于全生长期的优选植被指数PSRI+mSAVI+CIred-edge时间序列,可实现89.03%的平均识别精度,比单时相最佳REVI组合提升了4.72%~17.03%.研究证明Sentinel-2影像红边谱段及其衍生指数特征在区域森林优势树种识别中具有较高的应用价值,可为快速、准确地提取不同生长期森林植被信息提供技术方法参考.  相似文献   
920.
采用2018年敦煌莫高窟第16窟窟内与窟区PM10浓度及气象数据,分析PM10时空分布特征及其影响因素。结果表明:(1)两处监测点PM10浓度主要分布在50 μg·m-3以下,受重污染天气影响较小;春、冬、秋、夏季依次降低,窟区PM10浓度在春、冬季高于窟内,夏、秋季反之。(2)PM10浓度3月最高,9月最低,5—9月窟内月均值高于窟区。PM10污染日数窟内5月最多,而窟区3、5月较多。(3)PM10浓度日变化曲线在春季和秋季呈“双峰”型,夏季和冬季呈“单峰”型。(4)在半封闭环境的洞窟内,沙尘暴发生前后,PM10浓度达到极值及恢复至原来水平的时间均滞后于窟区。(5)在不同季节PM10浓度与气温、风速和降水呈负相关。除秋季外,PM10浓度与相对湿度、气压呈正相关。(6)窟区全年主风向为ESE,在冬春两季,此风向PM10浓度最高,PM10主要来自三危山前的戈壁滩、干涸的大泉河河道以及窟前裸露的地表积尘。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号