首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   7篇
大气科学   5篇
地球物理   15篇
地质学   54篇
海洋学   6篇
天文学   10篇
自然地理   3篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   4篇
  2013年   3篇
  2012年   1篇
  2011年   12篇
  2010年   11篇
  2009年   5篇
  2008年   7篇
  2007年   3篇
  2006年   8篇
  2005年   2篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1993年   2篇
  1991年   1篇
排序方式: 共有93条查询结果,搜索用时 140 毫秒
51.
The Alboran Domain, situated at the western end of the Mediterranean subduction system, is characterized by the Ronda Peridotites, one of the world's largest exposures of sub‐continental mantle. Using U–Pb (LA‐ICP‐MS) and Ar–Ar dating, we precisely dated two tectonic events associated with the Tertiary exhumation of the Ronda Peridotites. First, shearing along the Crust–Mantle Extensional Shear Zone caused, at ca. 22.5 Ma, mantle exhumation, local partial melting in the deep crust and coeval cooling in the upper crust. Second, the Ronda Peridotites Thrust triggered the final emplacement of the peridotites onto the continental crust at c. 21 Ma, as testified by granitic intrusions in the thrust hangingwall. The tectonic evolution of the western Alboran Domain is therefore characterized by a fast switch from continental lithospheric extension in a backarc setting, with sub‐continental mantle exhumation, to a rift inversion by thrusting driven by shortening of the upper plate.  相似文献   
52.
The Puhipuhi epithermal area, which occurs in a region of graywacke basement partially covered by basalt and lake-bed deposits, is characterized by both large-scale and small-scale geophysical anomalies. Known occurrences of locally intense alteration or silicification are typically associated with strong gravity, resistivity or IP anomalies. Gravity data define a complex negative residual anomaly (up to −50 gu) which has been used to identify and delineate a large area (about 20 km2) of low-density, presumably clay-altered, graywacke basement rocks. This zone, modeled as extending to a few kilometers depth, encompasses, but is more extensive than, the known areas of alteration and has a close spatial association with the basalt cover rocks. Short-wavelength gravity minima and maxima, which indicate that the most intense alteration of the basement rocks occurs below the basalt, correlate, in part, with the inferred location of hydrothermal upflow zones. The control on the location of these zones and their relationship to the location of the basalts is not well known; however, if the basalts acted as a cap rock to the geothermal system, then these areas merit further exploration. High (≥100 ohm-m) and low (≤10 ohm-m) resistivity and high (≥30 mS) IP anomalies occur in association with known silicification, clay alteration and sulfide mineralisation, respectively. In addition, magnetic data help constrain the relative timing of hydrothermal alteration and basaltic volcanism and indicate that mineralisation was broadly synchronous with volcanism.  相似文献   
53.
The distribution of arsenic (As(III), As(V)) and iron (Fe(II), Fe(III)) species was monitored during 1 year in a borehole drilled in the Carnoulès tailings impoundment which contains As-rich pyrite. The concentrations of total As and Fe in subsurface waters exhibited strong variations over one year, which were controlled by dissolved oxygen concentrations. At high oxygen levels, extremely high As (up to 162 mM) and Fe (up to 364 mM) concentrations were reached in the borehole, with the oxidised species predominant. As and Fe concentrations decreased 10-fold under oxygen-deficient conditions, as a result of pH increase and subsequent precipitation of As(V) and Fe(III). From drill core sections, it appeared that at low dissolved oxygen levels, As(III) was primarily released into water by the oxidation of As-rich pyrite in the unsaturated zone. Subsequent As and Fe precipitation was promoted during transport to the saturated zone; this reaction resulted in As enrichments in the sediment below the water table compared to the original content in pyrite, together with the formation of As-rich (up to 35 wt% As) ferruginous material in the unsaturated zone. High amounts of As(V) were released from these secondary phases during leaching experiments with oxygenated acid sulfate-rich waters; this process is believed to contribute to As(V) enrichment in the subsurface waters of the Carnoulès tailings during periods of high dissolved oxygen level.  相似文献   
54.
55.
Ca2SiO4 dicalcium silicate has been transformed at high pressure in a diamond-anvil cell (DAC) coupled with a YAG laser heater, in order to study the high-pressure modifications of this compound. Starting material was the olivine form of Ca2SiO4 (γ-polymorph). Several samples have been synthesized at loading pressures of 4.5, 10 and 15 GPa respectively, at room temperature. Other samples have been obtained at pressures ranging between 4.5 and 45 GPa and temperatures estimated to be about 2500 °C. The study of the quenched high pressure and/or high temperature phases has been performed using analytical transmission electron microscopy (ATEM) and X-ray diffraction (XRD). All the polymorphs of Ca2SiO4 usually produced with high temperatures, including α-Ca2SiO4, have been observed in the samples recovered from the high-pressure experiments. The α′-Ca2SiO4 and α-Ca2SiO4 polymorphs have been obtained at ambient conditions for the first time without stabilizing impurities. A new modification of α′-Ca2SiO4 has also been synthesized. Finally, the breakdown at high-pressure and temperature of Ca2SiO4 into CaSiO3 and CaO is reported.  相似文献   
56.
Gravity studies have delineated the largest ultramafic massif in New Zealand, embedded within a buried major SW Pacific crustal suture zone. This suture records terrane collision onto the Gondwana margin during the Mesozoic and separates a forearc terrane from an outboard accretionary prism terrane. It can be traced throughout the length of New Zealand as the Junction Magnetic Anomaly and contains the Permian Dun Mountain Ophiolite Belt, which in the South Island of New Zealand is characterized by a string of isolated ultramafic massifs in a sheared matrix of serpentinite and sediment. Our analysis reveals a steep gravity gradient at the suture boundary which is attributed to a newly recognised density contrast (0.1 Mg m− 3) between terranes of the forearc and the accretionary prism. The massif itself is marked by the occurrence of a strong, elongate residual gravity anomaly (+ 120 g.u.) extending 50 km along the suture and coincident with the Junction Magnetic Anomaly. It is modelled, at its southern end, as a dense, 15 km wide source body, extending to at least 6 km in depth. In conjunction with detailed aeromagnetic data, this modeling indicates the presence of a spindle-shaped ultramafic massif, analogous to, but larger than similar bodies found within the Dun Mountain Ophiolite Belt elsewhere. This fabric of sheared serpentinites enclosing ultramafic massifs therefore extends at least the length of New Zealand and probably beyond. In part it may result from accretion of asperities in the subducting plate, but it is also due to disruption of larger ultramafic bodies during subsequent strike-slip motion, which caused the remarkable linearity of the Dun Mountain Belt. Given the common occurrence of the plate tectonic processes involved, it is likely that such structures can be found in other regions around the world using similar geophysical potential field methods.  相似文献   
57.
按侵位顺序可划分为岩浆熔离型、深熔贯入型和热液叠加型成矿作用,其中后二者与贵金属的富集及成矿关系最为密切,尤其是热液作用.贵金属Au、Ag、Pt、Pd主要在热液成矿流体分异形成的高铜块状矿体中富集;含矿岩浆在岩浆房中深熔的时间与各成因类型矿体侵位是反序的;Cu、Ni及贵金属矿是经深源熔离和脉动式多次成矿作用形成的.  相似文献   
58.
The input of groundwater-borne nutrients to Adelaide's (South Australia) coastal zone is not well known but could contribute to the ongoing decline of seagrass in the area. As a component of the Adelaide Coastal Waters Study (ACWS), the potential for using the radium quartet (223Ra, 224Ra, 226Ra and 228Ra) and 222Rn to evaluate submarine groundwater discharge (SGD) was evaluated. Potential isotopic signatures for SGD were assessed by sampling groundwater from three regional aquifers potentially contributing SGD to the ACWS area. In addition, intertidal groundwater was sampled at two sand beach sites. In general, the regional groundwaters were enriched in long-lived Ra isotopes (226Ra and 228Ra) and in 222Rn relative to intertidal groundwater. Radium activity (but not 222Rn activity) was positively correlated to salinity in groundwater from one of the regional aquifers and in intertidal groundwater. Radium isotope ratios (223Ra/226Ra, 224Ra/226Ra and 228Ra/226Ra) were less variable than individual Ra isotope activities within potential SGD sources. Recirculated seawater (estimated from the intertidal groundwater samples with seawater-like salinities) also had distinctly higher Ra isotope ratios than the regional groundwaters. The activities for all radioisotopes were relatively low in seawater. The activity of the short-lived 223Ra and 224Ra were highest at the shoreline and declined exponentially with distance offshore. In contrast, 228Ra and 226Ra activities had a weak linear declining trend with distance offshore. Rn-222 activity was at or near background in all seawater samples. The pattern of enrichment in short-lived Ra isotopes and the lack of 222Rn in seawater suggest that seawater recirculation is the main contributor to SGD in the ACWS area. Preliminary modeling of the offshore flux of 228Ra and 226Ra suggest that the SGD flux to the ACWS area ranges between 0.2 and 3 · 10− 3 m3 (m of shoreline)− 1 s− 1.  相似文献   
59.
Several laboratory studies have recently demonstrated the utility of geophysical methods for the investigation of microbial-induced changes over contaminated sites. However, it remains difficult to distinguish the effects due to the new physical properties imparted by microbial processes, to bacterial growth, or to the development of bacterial biofilm. We chose to study the influence of biofilm formation on geophysical response using complex conductivity measurements (0.1-1000 Hz) in phenanthrene-contaminated media. Biotic assays were conducted with two phenanthrene (PHE) degrading bacterial strains: Burkholderia sp (NAH1), which produced biofilm and Stenophomonas maltophilia (MATE10), which did not, and an abiotic control. Results showed that bacterial densities for NAH1 and MATE10 strains continuously increased at the same rate during the experiment. However, the complex conductivity signature showed noticeable differences between the two bacteria, with a phase shift of 50 mrad at 4 Hz for NAH1, which produced biofilm. Biofilm volume was quantified by Scanning Confocal Laser Microscopy (SCLM). Significant correlations were established between phase shift decrease and biofilm volume for NAH1 assays. Results suggest that complex conductivity measurements, specifically phase shift, can be a useful indicator of biofilm formation inside the overall signal of microbial activity on contaminated sites.  相似文献   
60.
The inorganic manufactured nanoparticles as TiO2, Ag°, the iron oxides and CeO2 are more and more present in various manufactured products and in the aqueous media (TiO2). Their dispersion in the ecosystems during their life cycle will be associated with interactions with biota (plants, bacteria, fishes). The present work shows strong relations between particular physical chemical properties of very small nanoparticles (size < 30 nm) and biological activity perturbations. It is shown that Ag° and CeO2 act at very low concentrations. TiO2 act via the ROS production due to their photo-reactivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号