首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35782篇
  免费   1111篇
  国内免费   536篇
测绘学   1017篇
大气科学   3375篇
地球物理   8245篇
地质学   12764篇
海洋学   2634篇
天文学   7063篇
综合类   254篇
自然地理   2077篇
  2020年   184篇
  2019年   206篇
  2018年   915篇
  2017年   841篇
  2016年   932篇
  2015年   593篇
  2014年   783篇
  2013年   1513篇
  2012年   1340篇
  2011年   1429篇
  2010年   985篇
  2009年   1370篇
  2008年   1172篇
  2007年   1047篇
  2006年   1165篇
  2005年   1679篇
  2004年   1673篇
  2003年   1496篇
  2002年   1039篇
  2001年   814篇
  2000年   828篇
  1999年   674篇
  1998年   634篇
  1997年   681篇
  1996年   583篇
  1995年   542篇
  1994年   483篇
  1993年   427篇
  1992年   421篇
  1991年   422篇
  1990年   430篇
  1989年   402篇
  1988年   381篇
  1987年   468篇
  1986年   435篇
  1985年   465篇
  1984年   558篇
  1983年   561篇
  1982年   501篇
  1981年   491篇
  1980年   450篇
  1979年   433篇
  1978年   448篇
  1977年   395篇
  1976年   358篇
  1975年   359篇
  1974年   405篇
  1973年   390篇
  1972年   245篇
  1971年   224篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
981.
982.
983.
984.
Ohne Zusammenfassung  相似文献   
985.
986.
987.
988.
989.
Composite granite–quartz veins occur in retrogressed ultrahigh pressure (UHP) eclogite enclosed in gneiss at General's Hill in the central Sulu belt, eastern China. The granite in the veins has a high‐pressure (HP) mineral assemblage of dominantly quartz+phengite+allanite/epidote+garnet that yields pressures of 2.5–2.1 GPa (Si‐in‐phengite barometry) and temperatures of 850–780°C (Ti‐in‐zircon thermometry) at 2.5 GPa (~20°C lower at 2.1 GPa). Zircon overgrowths on inherited cores and new grains of zircon from both components of the composite veins crystallized at c. 221 Ma. This age overlaps the timing of HP retrograde recrystallization dated at 225–215 Ma from multiple localities in the Sulu belt, consistent with the HP conditions retrieved from the granite. The εHf(t) values of new zircon from both components of the composite veins and the Sr–Nd isotope compositions of the granite consistently lie between values for gneiss and eclogite, whereas δ18O values of new zircon are similar in the veins and the crustal rocks. These data are consistent with zircon growth from a blended fluid generated internally within the gneiss and the eclogite, without any ingress of fluid from an external source. However, at the peak metamorphic pressure, which could have reached 7 GPa, the rocks were likely fluid absent. During initial exhumation under UHP conditions, exsolution of H2O from nominally anhydrous minerals generated a grain boundary supercritical fluid in both gneiss and eclogite. As exhumation progressed, the volume of fluid increased allowing it to migrate by diffusing porous flow from grain boundaries into channels and drain from the dominant gneiss through the subordinate eclogite. This produced a blended fluid intermediate in its isotope composition between the two end‐members, as recorded by the composite veins. During exhumation from UHP (coesite) eclogite to HP (quartz) eclogite facies conditions, the supercritical fluid evolved by dissolution of the silicate mineral matrix, becoming increasingly solute‐rich, more ‘granitic’ and more viscous until it became trapped. As crystallization began by diffusive loss of H2O to the host eclogite concomitant with ongoing exhumation of the crust, the trapped supercritical fluid intersected the solvus for the granite–H2O system, allowing phase separation and formation of the composite granite–quartz veins. Subsequently, during the transition from HP eclogite to amphibolite facies conditions, minor phengite breakdown melting is recorded in both the granite and the gneiss by K‐feldspar+plagioclase+biotite aggregates located around phengite and by K‐feldspar veinlets along grain boundaries. Phase equilibria modelling of the granite indicates that this late‐stage melting records P–T conditions towards the end of the exhumation, with the subsolidus assemblage yielding 0.7–1.1 GPa at <670°C. Thus, the composite granite–quartz veins represent a rare example of a natural system recording how the fluid phase evolved during exhumation of continental crust. The successive availability of different fluid phases attending retrograde metamorphism from UHP eclogite to amphibolite facies conditions will affect the transport of trace elements through the continental crust and the role of these fluids as metasomatic agents interacting with the mantle wedge in the subduction channel.  相似文献   
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号