首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195篇
  免费   4篇
  国内免费   1篇
测绘学   2篇
大气科学   32篇
地球物理   33篇
地质学   81篇
海洋学   17篇
天文学   15篇
自然地理   20篇
  2020年   2篇
  2017年   3篇
  2016年   12篇
  2014年   3篇
  2013年   8篇
  2012年   5篇
  2011年   9篇
  2010年   5篇
  2009年   11篇
  2008年   9篇
  2007年   12篇
  2006年   3篇
  2005年   7篇
  2004年   7篇
  2003年   3篇
  2002年   5篇
  2001年   10篇
  2000年   7篇
  1999年   6篇
  1998年   9篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   5篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   5篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1973年   3篇
  1972年   2篇
  1971年   1篇
  1969年   2篇
  1968年   3篇
  1964年   1篇
  1962年   1篇
  1961年   1篇
  1960年   1篇
  1956年   1篇
  1949年   1篇
  1937年   1篇
排序方式: 共有200条查询结果,搜索用时 515 毫秒
81.
82.
Flux measurements of ozone and water vapour employing the eddy correlation technique were used to determine the surface conductance and canopy conductance to ozone. In the surface conductance to ozone, all surfaces at which ozone is destroyed and the transport process to these surfaces are included. The canopy conductance to ozone represents the ozone uptake of transpiring plant parts. The surface conductance to ozone of the maize crop and the underlying soil was generally larger than the canopy conductance to ozone. This means that beside the uptake by stomata, there was another important ozone sink. Under wet soil surface conditions, the surface conductance and the canopy conductance to ozone coincided. This indicates that the resistance of wet soil and the remaining plant parts (cuticle) to ozone was much larger than the stomatal or soil resistance. On the other hand, under dry soil conditions the conductances differ, largely caused by a variation in the transport process to the soil. The transport of ozone to soil increased with increasing friction velocity (u *) and decreased with increasing atmospheric stability, leaf area index (LAI) or crop height (h). These effects for midday (unstable) conditions were parameterized with an in-crop aerodynamic resistance,r inc in a very straightforward way;r inc=13.9 LAIh/u *+67 (cc.=0.77). If the ozone flux in air pollution models is described with a simple resistance model (Big Leaf model), the extra destruction at the soil should be modelled using an in-crop aerodynamic resistance. For these measurements the ozone flux to the soil was 0–65% of the total ozone flux measured above the crop. Under wet soil conditions, this was less than 20%; under dry soil conditions, this was 30–65%.  相似文献   
83.
84.
 The 1995 Water Consumer Protection Act of Tucson, Arizona, USA (hereafter known as the Act) was passed following complaints from Tucson Water customers receiving treated Central Arizona Project (CAP) water. Consequences of the Act demonstrate the uncertainties and difficulties that arise when the public is asked to vote on a highly technical issue. The recharge requirements of the Act neglect hydrogeological uncertainties because of confusion between "infiltration" and "recharge." Thus, the Act implies that infiltration in stream channels along the Central Wellfield will promote recharge in the Central Wellfield. In fact, permeability differences between channel alluvium and underlying basin-fill deposits may lead to subjacent outflow. Additionally, even if recharge of Colorado River water occurs in the Central Wellfield, groundwater will become gradually salinized. The Act's restrictions on the use of CAP water affect the four regulatory mechanisms in Arizona's 1980 Groundwater Code as they relate to the Tucson Active Management Area: (a) supply augmentation; (b) requirements for groundwater withdrawals and permitting; (c) Management Plan requirements, particularly mandatory conservation and water-quality issues; and (d) the requirement that all new subdivisions use renewable water supplies in lieu of groundwater. Political fallout includes disruption of normal governmental activities because of the demands in implementing the Act. Received, December 1996 · Revised, October 1997 · Accepted, October 1997  相似文献   
85.
We have measured activity coefficients for NiO and FeO in a variety of silicate melts (SiO2-CaO-MgO-Al2O3) using electrochemical methods similar to square wave voltametry. We report the activity of the oxide ion (aO2−) in one composition. Based on these measurements, we have constructed a model that predicts the variations in activity we observe, and also variations in NiO activity reported in the literature. Activity of metal-oxide components such as NiO and FeO in silicate melts can be understood by considering contributions from both the activity of the oxide ion and the activity of the cation through expressions of the type:
  相似文献   
86.
87.
This study uses three acoustic instruments (different in their operating frequencies, 13, 3.5, and 6–10 kHz, and deployment type, hull-mounted, surface-towed and deep-towed) to investigate and characterize the acoustic response of seafloor NE of Oman in a frequency-independent manner. High-resolution control was achieved by having selected areas of our acoustic transects ground-truthed by sampling and/or sea-floor photography. On the regional scale, the greatest degree of change in backscatter amplitude was correlated with major changes of seabed morphology and lithology. However, small-scale roughness had the biggest effect on amplitude on the local scale, i.e. within each area of specific seafloor type. The study also shows that seafloor reflection amplitude changes are far more easily detected by deep-towed instrument than by surface-towed or hull-mounted systems. Whilst there are significant changes in bioturbation types and density along the transects, the suite of instruments deployed was not able to pick up the effect of the bioturbation on acoustic signals.  相似文献   
88.
The ocean signal for this study is the sea surface height due to the slowly varying (greater than 5-day) ocean processes, which are predominantly the deep ocean mesoscale. These processes are the focus of present assimilation systems for monitoring and predicting ocean circulation due to ocean fronts and eddies and the associated environmental changes that impact real time activities in areas with depths greater than about 200 m. By this definition, signal-to-noise may be estimated directly from altimeter data sets through a crossover point analysis. The RMS variability in crossover differences is due to instrument noise, errors in environmental corrections to the satellite observation, and short time period oceanic variations. The signal-to-noise ratio indicates that shallow areas are typically not well observed due to the high frequency fluctuations. Many deep ocean areas also contain significant high frequency variability such as the subpolar latitudes, which have large atmospheric pressure systems moving through, and these in turn generate large errors in the inverse barometer correction. Understanding the spatial variations of signal to noise is a necessary prerequisite for correct assimilation of the data into operational systems.  相似文献   
89.
Absolute geostrophic velocities were calculated along TOPEX/Poseidon (T/P) groundtracks located in the Ulleung Basin of the southwestern Japan/East Sea (JES) from a combined analysis of nearly a decade of T/P data and two years of pressure-gauge-equipped inverted echo sounder (PIES) data obtained during the United States Office of Naval Research’s JES Program. Geostrophic velocities have been calculated daily for the Ulleung Basin from June 1999 to July 2001 from a three-dimensional mapping of temperature and salinity produced by PIES data interpreted via the Gravest Empirical Mode (GEM) technique combined with the Navy’s Modular Ocean Data Assimilation System (MODAS). These velocities were then used to convert T/P velocity anomalies to absolute velocities for the T/P time period of 1993 to 2002. Current intensities and variabilities associated with the East Korean Warm Current, Ulleung Warm Eddy, and Offshore Branch are examined. Spatial and temporal variations of the sea surface circulation are strong. Intensification of the currents generally occurred during the fall season. The flow pattern in individual years differed greatly from year to year and differed from climatology in important qualitative ways.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号