首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195篇
  免费   4篇
  国内免费   1篇
测绘学   2篇
大气科学   32篇
地球物理   33篇
地质学   81篇
海洋学   17篇
天文学   15篇
自然地理   20篇
  2020年   2篇
  2017年   3篇
  2016年   12篇
  2014年   3篇
  2013年   8篇
  2012年   5篇
  2011年   9篇
  2010年   5篇
  2009年   11篇
  2008年   9篇
  2007年   12篇
  2006年   3篇
  2005年   7篇
  2004年   7篇
  2003年   3篇
  2002年   5篇
  2001年   10篇
  2000年   7篇
  1999年   6篇
  1998年   9篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   5篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   5篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1973年   3篇
  1972年   2篇
  1971年   1篇
  1969年   2篇
  1968年   3篇
  1964年   1篇
  1962年   1篇
  1961年   1篇
  1960年   1篇
  1956年   1篇
  1949年   1篇
  1937年   1篇
排序方式: 共有200条查询结果,搜索用时 15 毫秒
61.
The effect of mesoscale eddy variability on the Japan/East Sea mean circulation is examined from satellite altimeter data and results from the Naval Research Laboratory Layered Ocean Model (NLOM). Sea surface height variations from the Geosat-Exact Repeat Mission and TOPEX/POSEIDON altimeter satellites imply geostrophic velocities. At the satellite crossover points, the total velocity and the Reynolds stress due to geostrophic mesoscale turbulence are calculated. After spatial interpolation the momentum flux and effect on geostrophic balance indicates that the eddy variability aids in the transport of the Polar Front and the separation of the East Korean Warm Current (EKWC). The NLOM results elucidate the impact of eddy variability on the EKWC separation from the Korean coast. Eddy variability is suppressed by either increasing the model viscosity or decreasing the model resolution. The simulations with decreased eddy variability indicate a northward overshoot of the EKWC. Only the model simulation with sufficient eddy variability depicts the EKWC separating from the Korean coast at the observed latitude. The NLOM simulations indicate mesoscale influence through upper ocean-topographic coupling. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
62.
A. Jacobs 《Solar physics》1968,5(3):359-360
The incorporation of two-photon transitions between the levels 2s and 1s into the calculation of level populations of the hydrogenic O7+ ion reduces the coronal temperature, deduced from the Ly- - Ly- ratio, from appr. 4 × 106 K to about 1.5 × 106 K.  相似文献   
63.
64.
Two types of phosphorite recovered from the continental slope off western India are described. The first type, phosphorite 1, comprises a hard, grey nodule composed of carbonate fluorapatite (CFA) and calcite as major minerals. The phosphorite consists of light‐brown microcrystalline apatite containing a few skeletal fragments and planktonic foraminifera. Scanning electron microscope (SEM) studies show evidence of dissolution of skeletal calcite and filling of the resulting cavities by phosphate composed of ovoid to rod‐shaped apatite microparticles. Apatite also occurs as coatings on these particles. The P2O5 content of the phosphorite is 29%, and the CO2 content of the CFA is about 4·5%. The rare‐earth element (REE) abundance (ΣREE=2·02 μg g–1) is lower than in other modern phosphorites. The 87Sr/86Sr ratio and ?Nd value of this sample are 0·70921 and –9·9 respectively. The 14C age found through accelerator mass spectrometry (AMS) dating (18 720 ± 120 years BP) is much younger than that determined by the U‐series method (100 ka). The second type, phosphorite 2, comprises a friable, light‐brown nodule consisting of CFA as the only major mineral, with a CO2 content of the CFA of 4·5%. In thin section, the phosphate is light brown and homogeneous, and a few bone fragments are present. The P2O5 content is 33%, and REE contents (ΣREE = 0·18 μg g–1) are lower than in phosphorite 1. The age of phosphorite 2 is >300 ka. Phosphorite 1 appears to have formed during the late Pleistocene through replacement of carbonate by phosphate; phosphorite 2 is also of Pleistocene age but is much older than phosphorite 1. The initial substrate for phosphorite 2 was a fish coprolite, which was subsequently phosphatized during slow sedimentation under low‐energy conditions. Microbial mediation is evident in both phosphorites. The colour, density and P2O5 content of the phosphorites are found to be dependent on the nature of the initial substrates and physico‐chemical conditions during phosphatization. The CO2 content of the CFA is not related to the precursor carbonate phase. The nature of sediments, rates of sedimentation and the time spent undergoing phosphogenesis at the sediment–water interface may control REE concentrations in phosphorites.  相似文献   
65.
66.
Quantification of landslide susceptibility variability in space and time in response to static and dynamic conditions is a fundamental research challenge. Here, we identify and apply new modeling and remote sensing observation techniques to statistically characterize susceptibility distributions under dynamic moisture conditions. The methods are applied at two study regions: Cleveland Corral, California, US and Dhading, Nepal. The results show that the temporal variability of safety factors is lower during the wet season than the dry season, but this variability, when scaled by mean seasonal stability, is constant annually. Relative variability differs by region with lower variability in Nepal, the highly susceptible region. L-Moment evaluations indicate that Nepal has a consistent, regional probability distribution, but that California has two distinct distributions. The variability in time is not normally distributed for either region. For both regions, transitional characteristic of safety factors show a strong power law relationship between the average duration and number of periods during which sites are highly susceptible. Because the mapped landslide locations typically had frequent crossings with brief unstable conditions, a consistent physical mechanism is pointed to as a possible cause of slope failure.  相似文献   
67.
We studied the variation of the shape of the proton intensity–time profiles in simulated gradual Solar Energetic Particle (SEP) events with the relative observer’s position in space with respect to the main direction of propagation of an interplanetary (IP) shock. Using a three-dimensional (3D) magnetohydrodynamic (MHD) code to simulate such a shock, we determined the evolution of the downstream-to-upstream ratios of the plasma variables at its front. Under the assumption of an existing relation between the normalized ratio in speed across the shock front and the injection rate of shock-accelerated particles, we modelled the transport of the particles and obtained the proton flux profiles to be measured by a grid of 18 virtual observers located at 0.4 and 1.0 AU, with different latitudes and longitudes with respect to the shock nose. The differences among flux profiles are the result of the way each observer establishes a magnetic connection with the shock front, and we found that changes in the observer’s latitude may result in intensity changes of up to one order of magnitude at the two radial distances considered here. The peak intensity variation with the radial distance for the pair of observers located at the same angular position was also derived. This is the first time that the latitudinal dependence of the peak intensity with the observer’s heliocentric radial distance has been quantified within the framework of gradual SEP event simulations.  相似文献   
68.
Instrumentation built to record seeing data automatically via image motion measurements of bright stars in small telescopes is described. The centroid of the star image is found 256 times s-1 in one dimension and is analyzed on-line. The device works over a range of FWHM values as would be seen through a large telescope between <0.1 and 3.0 arcsec. The first results for two identical instruments set up at two locations near the duPont Telescope at Las Campanas Observatory are reported. For a total of 61 nights of data (450 h at each site), the median seeing is 0.6 arcsec, with quartiles at 0.4 and 0.8 arcsec. These are FWHM values referred to 5000 Å at the zenith. So far, the two sites are indistinguishable on average.  相似文献   
69.
70.
J. A. Jacobs 《地学学报》1997,9(3):140-143
The Earth's inner core has been the focus of much attention in recent years — its evolution, when it began to form and how quickly it grew, and what role it plays in the generation and reversals of the Earth's magnetic field. It has also been found that it is elastically anisotropic and, even more surprisingly, that it is rotating faster than the rest of the Earth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号