首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   1篇
大气科学   5篇
地球物理   14篇
地质学   9篇
海洋学   4篇
天文学   6篇
自然地理   1篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   6篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  1999年   1篇
  1997年   3篇
  1995年   1篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1975年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有39条查询结果,搜索用时 31 毫秒
21.
Plants require solar radiation for photosynthesis and their growth is directly related to the amount received, assuming that other environmental parameters are not limiting. Therefore, precise estimation of photosynthetically active radiation (PAR) is necessary to enhance overall accuracies of plant growth models. This study aimed to explore the PAR radiant flux in the San Francisco Bay Area of northern California. During the growing season (March through August) for 2?years 2007?C2008, the on-site magnitudes of photosynthetic photon flux densities (PPFD) were investigated and then processed at both the hourly and daily time scales. Combined with global solar radiation (R S) and simulated extraterrestrial solar radiation, five PAR-related values were developed, i.e., flux density-based PAR (PPFD), energy-based PAR (PARE), from-flux-to-energy conversion efficiency (fFEC), and the fraction of PAR energy in the global solar radiation (fE), and a new developed indicator??lost PARE percentages (LPR)??when solar radiation penetrates from the extraterrestrial system to the ground. These PAR-related values indicated significant diurnal variation, high values occurring at midday, with the low values occurring in the morning and afternoon hours. During the entire experimental season, the overall mean hourly value of fFEC was found to be 2.17???mol?J?1, while the respective fE value was 0.49. The monthly averages of hourly fFEC and fE at the solar noon time ranged from 2.15 in March to 2.39???mol?J?1 in August and from 0.47 in March to 0.52 in July, respectively. However, the monthly average daily values were relatively constant, and they exhibited a weak seasonal variation, ranging from 2.02?mol?MJ?1 and 0.45 (March) to 2.19?mol?MJ?1 and 0.48 (June). The mean daily values of fFEC and fE at the solar noon were 2.16?mol?MJ?1 and 0.47 across the entire growing season, respectively. Both PPFD and the ever first reported LPR showed strong diurnal patterns. However, they had opposite trends. PPFD was high around noon, resulting in low values of LPR during the same time period. Both were found to be highly correlated with global solar radiation R S, solar elevation angle h, and the clearness index K t. Using the best subset selection of variables, two parametric models were developed for estimating PPFD and LPR, which can easily be applied in radiometric sites, by recording only global solar radiation measurements. These two models were found to be involved with the most commonly measured global solar radiation (R S) and two large-scale geometric parameters, i.e., extraterrestrial solar radiation and solar elevation. The models were therefore insensitive to local weather conditions such as temperature. In particular, with two test data sets collected in USA and Greece, it was verified that the models could be extended across different geographical areas, where they performed well. Therefore, these two hourly based models can be used to provide precise PAR-related values, such as those required for developing precise vegetation growth models.  相似文献   
22.
Numerical experiments are conducted to examine the effects of gravity on monodisperse and polydisperse colloid transport in water-saturated fractures with uniform aperture. Dense colloids travel in water-saturated fractures by advection and diffusion while subject to the influence of gravity. Colloids are assumed to neither attach onto the fracture walls nor penetrate the rock matrix based on the assumptions that they are inert and their size is larger than the pore size of the surrounding solid matrix. Both the size distribution of a colloid plume and colloid density are shown to be significant factors impacting their transport when gravitational forces are important. A constant-spatial-step particle-tracking code simulates colloid plumes with increasing densities transporting in water-saturated fractures while accounting for three forces acting on each particle: a deterministic advective force due to the Poiseuille flow field within the fracture, a random force caused by Brownian diffusion, and the gravitational force. Integer angles of fracture orientation with respect to the horizontal ranging from ±90° are considered: three lognormally distributed colloid plumes with mean particle size of 1 μm (averaged on a volumetric basis) and standard deviation of 0.6, 1.2 and 1.8 μm are examined. Colloid plumes are assigned densities of 1.25, 1.5, 1.75 and 2.0 g/cm3. The first four spatial moments and the first two temporal moments are estimated as functions of fracture orientation angle and colloid density. Several snapshots of colloid plumes in fractures of different orientations are presented. In all cases, larger particles tend to spread over wider sections of the fracture in the flow direction, but smaller particles can travel faster or slower than larger particles depending on fracture orientation angle.  相似文献   
23.
A cervelleite-like mineral, two unnamed silver sulfotellurides in the system Ag-Cu-Te-S [Ag2CuTeS, (Ag,Cu)2TeS], Te-rich polybasite and cadmian tetrahedrite occur in gold-bearing quartz veins in metapelites and faults within brecciated marbles of the Cycladic Blueschist Unit in the Kallianou area (southern Evia Island, Greece). The quartz veins and faults are discordant to syn-metamorphic structures and formed during ductile to brittle deformation in the final stages of exhumation of the Styra Nappe extrusion wedge (~21?Ma). Te-rich polybasite (up to 7.4 wt. % Te), cadmian tetrahedrite (up to 12.4 wt. % Cd), together with electrum (23?C54 wt. % Ag) and the sulfotellurides, are the main silver carriers in the mineralization. The two unnamed sulfotellurides, Ag2CuTeS and (Ag,Cu)2TeS are believed to be new quaternary minerals in the system Ag-Cu-Te-S. These minerals and the cervelleite-like phase could have exsolved from galena during cooling (below 200°C). Initial temperatures for the formation of the sulfotellurides, in the form of hessite-intermediate solid solution, at Kallianou may be up to 300°C under logfS2 values between?~ ?11.5 to ?8.3, and logfTe2 from?~ ?14.8 to ?7.8. The values of logfTe2 and logfS2 during re-equilibration (at ~200°C) were constrained to ?19.5 to ?15.2 and to ?15.8 to ?11.5 respectively.  相似文献   
24.
Markov chain Monte Carlo (MCMC) techniques are now widely used for cosmological parameter estimation. Chains are generated to sample the posterior probability distribution obtained following the Bayesian approach. An important issue is how to optimize the efficiency of such sampling and how to diagnose whether a finite-length chain has adequately sampled the underlying posterior probability distribution. We show how the power spectrum of a single such finite chain may be used as a convergence diagnostic by means of a fitting function, and discuss strategies for optimizing the distribution for the proposed steps. The methods developed are applied to current cosmic microwave background and large-scale structure data interpreted using both a pure adiabatic cosmological model and a mixed adiabatic/isocurvature cosmological model including possible correlations between modes. For the latter application, because of the increased dimensionality and the presence of degeneracies, the need for tuning MCMC methods for maximum efficiency becomes particularly acute.  相似文献   
25.
The central part of Rethymnon Prefecture, Crete Island, suffers from severe landslide phenomena because of its geological and geomorphological settings alternated by the human activities. The main landslide preparatory and triggering causal factors are considered to be the ground conditions (lithology), geomorphological processes (fluvial erosion, etc.), and the man-made actions (excavations, loading etc.). The purpose of this study is to develop a decision support and continuous monitoring system of the area by composing landslide hazard and risk maps. For that reason, several approaches of the weighted linear combination (WLC), a semi-quantitative hazard analysis method, were adopted in a Geographic Information Systems (GIS) environment. The results were validated using a pre-existing landslide database enriched with new landslide locations mapped through image interpretation of a processed IKONOS satellite image. The validation results showed that the WLC method coupled with remote sensing (RS) and GIS techniques can support engineering geological studies concerning landslide vulnerability of hazardous areas.  相似文献   
26.
A quasi-three-dimensional particle tracking model is developed to characterize the spatial and temporal effects of advection, molecular diffusion, Taylor dispersion, fracture wall deposition, matrix diffusion, and co-transport processes on two discrete plumes (suspended monodisperse or polydisperse colloids and dissolved contaminants) flowing through a variable aperture fracture situated in a porous medium. Contaminants travel by advection and diffusion and may sorb onto fracture walls and colloid particles, as well as diffuse into and sorb onto the surrounding porous rock matrix. A kinetic isotherm describes contaminant sorption onto colloids and sorbed contaminants assume the unique transport properties of colloids. Sorption of the contaminants that have diffused into the matrix is governed by a first-order kinetic reaction. Colloids travel by advection and diffusion and may attach onto fracture walls; however, they do not penetrate the rock matrix. A probabilistic form of the Boltzmann law describes filtration of both colloids and contaminants on fracture walls. Ensemble-averaged breakthrough curves of many fracture realizations are used to compare arrival times of colloid and contaminant plumes at the fracture outlet. Results show that the presence of colloids enhances contaminant transport (decreased residence times) while matrix diffusion and sorption onto fracture walls retard the transport of contaminants. Model simulations with the polydisperse colloids show increased effects of co-transport processes.  相似文献   
27.
In the present work, the monthly anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) commercial catches, the anchovy/sardine commercial catch ratio as well as different climatic parameters in Hellenic waters (air and sea surface temperature AIRT and SST, sea level pressure SLP, N-S wind component NSW, and wind speed cubed WISC) over the 1964 to 1989 period were analyzed using spectral and cross-spectral analyses. The monthly anchovy and sardine catches as well as the anchovy/sardine catch ratio all exhibited a pronounced seasonal cycle that is related to the behaviour of sardine and anchovy and the nature of the purse seine fishery. Spectral analysis of the monthly sardine catches and anchovy/sardine catch ratio in the Hellenic waters also revealed cycles of 2.7 yr whereas that of anchovy catches revealed a prominent peak at 4.6 yr and secondary ones at 3.6 and 1.9 yr. Cross-spectral analysis resolved significant coherence between the anchovy/sardine ratio and SLP at 2.7 yr and marginally with NSW and WISC at 2.7 and 5.3 yr, respectively. The corresponding phase spectra showed that increased SLP and NSW over the north Aegean Sea proceed and are associated with decreased anchovy/sardine ratio with a lag of about 2.5 months for SLP and 6 months for NSW whereas increased WISC over the north Aegean proceed and are associated with increased anchovy/sardine ratio with a lag of 28 months. Cross-spectral analysis also resolved significant coherence between the anchovy catches and AIRT and SLP at 2.7 yr, NSW at 1.8 yr and WISC at 5.3 yr. The corresponding phase spectra showed that increased SLP, AIRT and NSW over the north Aegean Sea proceed and are associated with decreased anchovy catches with a lag of about 2 months for SLP, 16 months for AIRT and 6 months for NSW whereas increased WISC over the same area proceed and are associated with increased anchovy catches with a lag of 30 months. In contrast, cross-spectral analysis resolved no significant coherence between sardine catches and all five climatic variables. Possible mechanisms underlying such patterns are discussed.  相似文献   
28.
We propose a workflow of deblending methodology comprised of rank-reduction filtering followed by a signal enhancing process. This methodology can be used to preserve coherent subsurface reflections and at the same time to remove incoherent and interference noise. In pseudo-deblended data, the blending noise exhibits coherent events, whereas in any other data domain (i.e. common receiver, common midpoint and common offset), it appears incoherent and is regarded as an outlier. In order to perform signal deblending, a robust implementation of rank-reduction filtering is employed to eliminate the blending noise and is referred to as a joint sparse and low-rank approximation. Deblending via rank-reduction filtering gives a reasonable result with a sufficient signal-to-noise ratio. However, for land data acquired using unconstrained simultaneous shooting, rank-reduction–based deblending applications alone do not completely attenuate the interference noise. A considerable amount of signal leakage is observed in the residual component, which can affect further data processing and analyses. In this study, we propose a deblending workflow via a rank-reduction filter followed by post-processing steps comprising a nonlinear masking filter and a local orthogonalization weight application. Although each application shows a few footprints of leaked signal energy, the proposed combined workflow restores the signal energy from the residual component achieving significantly signal-to-noise ratio enhancement. These hierarchical schemes are applied on land simultaneous shooting acquisition data sets and produced cleaner and reliable deblended data ready for further data processing.  相似文献   
29.
30.
The aim of this paper is to present a method for simultaneous optimization of the design characteristics of an earth retaining structure design using quality tools. The design characteristics examined in this paper are safety factor, total displacements and cost. The methodology for the multi-response optimization used is the desirability analysis which gives the appropriate combinations for the design variables. Through standard experimental runs, we process the results for this optimization. The experimental measurements are calculated via finite elements analysis. The designs used are taken from two real-life case studies. This methodology is intended as a guide tool for civil and geotechnical engineers to predict the values of the design variables as long as they can be named and take discrete values. The uniqueness in this study is that approved experimental methodology can simultaneously optimize the design characteristics of an earth retaining structural design, which were until now calculated empirically.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号