首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   2篇
  国内免费   4篇
测绘学   5篇
大气科学   22篇
地球物理   28篇
地质学   51篇
海洋学   25篇
天文学   16篇
综合类   3篇
自然地理   9篇
  2020年   3篇
  2019年   2篇
  2018年   7篇
  2017年   5篇
  2016年   7篇
  2014年   3篇
  2013年   15篇
  2012年   4篇
  2011年   4篇
  2010年   6篇
  2009年   5篇
  2008年   7篇
  2007年   10篇
  2006年   3篇
  2005年   4篇
  2004年   6篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   5篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1973年   2篇
  1968年   1篇
  1958年   1篇
  1957年   1篇
  1956年   1篇
  1953年   2篇
  1952年   1篇
  1951年   1篇
  1948年   1篇
排序方式: 共有159条查询结果,搜索用时 685 毫秒
101.
Different studies investigating the stability of mixed sediment have found that the fine fraction can either stabilize or mobilize the bed. This study aims to find where the transition between these two modes occurs for sandy sediment and to identify the underlying (grain-scale) processes. Flume experiments with bimodal sediment were used to investigate near-bed processes of a non-cohesive sediment bed, and in particular how the grain shape and the ratio of different grain sizes influence bed mobility. Medium sand (D50,c ≈ 400 μm) was mixed with 40 % fine material of different diameters (D50,f = 53; 111; 193 μm) and subjected to increasing flow velocities (U = 1.3–22.2 cm s-1). The bed mobility (i.e. the change of the bed level over time), turbidity and near-bed hydrodynamics were analysed. Selected results were compared with similar previous experiments with spherical glass beads. The findings indicate that, due to the complex grain shapes of natural sediment, a sand bed is more stable than a bed composed of glass beads. The grain-size ratio RD = Dc /Df between the coarse and fine grain diameters controls whether the mixed bed is stabilized or mobilized by the presence of fines, with the transition between the modes occurring at RD = 4–5.5. Mixed beds with a very low RD < 2 behave like a unimodal bed. The results suggest that RD and grain shape influence bed roughness, near-bed flow, bed microstructure and the flow into and through the upper bed layers, which subsequently governs bed mobility. The interplay between all these processes can explain the transition between the stabilizing effect (high RD, small pore space) and the mobilizing effect (low RD, large pore space) of a fine fraction in a grain-size mixture. © 2018 John Wiley & Sons, Ltd.  相似文献   
102.
The Celtic Sea basins lie on the continental shelf between Ireland and northwest France and consist of a series of ENE–WSW trending elongate basins that extend from St George’s Channel Basin in the east to the Fastnet Basin in the west. The basins, which contain Triassic to Neogene stratigraphic sequences, evolved through a complex geological history that includes multiple Mesozoic rift stages and later Cenozoic inversion. The Mizen Basin represents the NW termination of the Celtic Sea basins and consists of two NE–SW-trending half-grabens developed as a result of the reactivation of Palaeozoic (Caledonian, Lower Carboniferous and Variscan) faults. The faults bounding the Mizen Basin were active as normal faults from Early Triassic to Late Cretaceous times. Most of the fault displacement took place during Berriasian to Hauterivian (Early Cretaceous) times, with a NW–SE direction of extension. A later phase of Aptian to Cenomanian (Early to Late Cretaceous) N–S-oriented extension gave rise to E–W-striking minor normal faults and reactivation of the pre-existing basin bounding faults that propagated upwards as left-stepping arrays of segmented normal faults. In common with most of the Celtic Sea basins, the Mizen Basin experienced a period of major erosion, attributed to tectonic uplift, during the Paleocene. Approximately N–S Alpine regional compression-causing basin inversion is dated as Middle Eocene to Miocene by a well-preserved syn-inversion stratigraphy. Reverse reactivation of the basin bounding faults was broadly synchronous with the formation of a set of near-orthogonal NW–SE dextral strike-slip faults so that compression was partitioned onto two fault sets, the geometrical configuration of which is partly inherited from Palaeozoic basement structure. The segmented character of the fault forming the southern boundary of the Mizen Basin was preserved during Alpine inversion so that Cenozoic reverse displacement distribution on syn-inversion horizons mirrors the earlier extensional displacements. Segmentation of normal faults therefore controls the geometry and location of inversion structures, including inversion anticlines and the back rotation of earlier relay ramps.  相似文献   
103.
This report continues the practice where the IAU Working Group on Cartographic Coordinates and Rotational Elements revises recommendations regarding those topics for the planets, satellites, minor planets, and comets approximately every 3 years. The Working Group has now become a “functional working group” of the IAU, and its membership is open to anyone interested in participating. We describe the procedure for submitting questions about the recommendations given here or the application of these recommendations for creating a new or updated coordinate system for a given body. Regarding body orientation, the following bodies have been updated: Mercury, based on MESSENGER results; Mars, along with a refined longitude definition; Phobos; Deimos; (1) Ceres; (52) Europa; (243) Ida; (2867) ?teins; Neptune; (134340) Pluto and its satellite Charon; comets 9P/Tempel 1, 19P/Borrelly, 67P/Churyumov–Gerasimenko, and 103P/Hartley 2, noting that such information is valid only between specific epochs. The special challenges related to mapping 67P/Churyumov–Gerasimenko are also discussed. Approximate expressions for the Earth have been removed in order to avoid confusion, and the low precision series expression for the Moon’s orientation has been removed. The previously online only recommended orientation model for (4) Vesta is repeated with an explanation of how it was updated. Regarding body shape, text has been included to explain the expected uses of such information, and the relevance of the cited uncertainty information. The size of the Sun has been updated, and notation added that the size and the ellipsoidal axes for the Earth and Jupiter have been recommended by an IAU Resolution. The distinction of a reference radius for a body (here, the Moon and Titan) is made between cartographic uses, and for orthoprojection and geophysical uses. The recommended radius for Mercury has been updated based on MESSENGER results. The recommended radius for Titan is returned to its previous value. Size information has been updated for 13 other Saturnian satellites and added for Aegaeon. The sizes of Pluto and Charon have been updated. Size information has been updated for (1) Ceres and given for (16) Psyche and (52) Europa. The size of (25143) Itokawa has been corrected. In addition, the discussion of terminology for the poles (hemispheres) of small bodies has been modified and a discussion on cardinal directions added. Although they continue to be used for planets and their satellites, it is assumed that the planetographic and planetocentric coordinate system definitions do not apply to small bodies. However, planetocentric and planetodetic latitudes and longitudes may be used on such bodies, following the right-hand rule. We repeat our previous recommendations that planning and efforts be made to make controlled cartographic products; newly recommend that common formulations should be used for orientation and size; continue to recommend that a community consensus be developed for the orientation models of Jupiter and Saturn; newly recommend that historical summaries of the coordinate systems for given bodies should be developed, and point out that for planets and satellites planetographic systems have generally been historically preferred over planetocentric systems, and that in cases when planetographic coordinates have been widely used in the past, there is no obvious advantage to switching to the use of planetocentric coordinates. The Working Group also requests community input on the question submitting process, posting of updates to the Working Group website, and on whether recommendations should be made regarding exoplanet coordinate systems.  相似文献   
104.
It is widely acknowledged that fault rock capillary properties are important in controlling the distribution of hydrocarbons in sedimentary basins, and methods exist for predicting the capillary seal capacity of prospect bounding faults. However, fault seal capacity is rarely incorporated into models of hydrocarbon migration. This paper presents the results of migration modelling of the Oseberg Syd area of the Viking Graben incorporating fault rock capillary properties. Seal capacity is calculated in the model as a function of Shale Gouge Ratio (SGR), i.e. the percentage shale in the sequence moved past a point on a fault. Over 3000 model realisations were run for different SGR to fault seal capacity relationships and the calculated hydrocarbon distributions were compared with known distributions. Realisations were ranked according to the closeness of fit between model and actual oil–water contacts for 7 traps. The best-fit to all 7 traps was provided by realisations with significant seal capacity at SGR values greater than ca. 0.2; a value which is in agreement with an independently derived fault-by-fault calibration between SGR and seal capacity. The level of fill calculated for an individual trap is extremely sensitive to minor changes in the seal capacity relationship because it is controlled not only by the seal capacities of the faults that bound the trap, but also by the pattern of fill–spill of upstream traps. This sensitivity to minor changes in seal capacity introduces large uncertainties when fault seal capacity relationships are used in a predictive mode and emphasises the requirement for migration modelling in fault seal prospect evaluation.  相似文献   
105.
Four Fe-rich deposits, two occurring at springs, one on boulders in a stream and the fourth in a stream bed on andesitic volcanoes in the North Island, New Zealand, have been investigated by mineralogical techniques. They have poorly-ordered structure with compositions intermediate between those of ferrihydrite and hisingerite. Electron microscopy revealed solid spheres of 30 Å dia which formed 0.1-0.5 μm aggregates. Surface areas, as measured by ethylene glycol monoethyl ether, were close to 600 m2/g.X-ray diffraction gave weak patterns similar to both ferrihydrite and hisingerite. Infrared absorption showed a shift in the Si-O stretching band from 965 to 1020 cm?1 with decreasing amounts of Fe and increasing amounts of Si. These frequencies imply the presence of Fe-O-Si bonds in these materials. Desilication, by treatment with KOH in the laboratory, resulted in a conversion of these intermediates towards ferrihydrite.  相似文献   
106.
We examined the population genetic structure of the New Zealand endemic clam, Austrovenus stutchburyi, to determine (1) whether populations of this estuarine taxon are genetically subdivided and (2) if the locations of genetic boundaries were congruent with known biogeographic break points. We obtained sequences of the mitochondrial gene cytochrome c oxidase I for 372 A. stutchburyi from 29 New Zealand estuaries and conducted analyses to identify population genetic structure. We detected a pattern of genetic isolation by distance and identified six A. stutchburyi subpopulations, a greater number of subpopulations than reported for much of New Zealand’s open coast benthos. Although these data indicate that long distance dispersal may be less frequent in estuarine than in open coast taxa, partial congruence between genetic and biogeographic boundaries suggests that historical events and natural selection may also contribute to the observed population genetic structure.  相似文献   
107.
Abstract

We conducted a PUB (predictions in ungauged basins) experiment looking at hydrology and crop dynamics in the semi-arid rural Mod catchment in India. The experiment was motivated by the aims (a) to develop a coupled eco-hydrological model capable of analysing land-use strategies concerning crop water need, erosion protection, crop yield and resistivity against droughts and floods, and (b) to assess the feasibility of a strategy for collecting the necessary data in a data-scarce region. Our experiment combines parsimonious data assessment and eco-hydrological model coupling at the lower mesoscale. Linking bottom-up sampling of functionally representative soil classes and top-down regionalization based on spectral properties of the same resulted in a comprehensive distributed data basis for the model. A clear focus on the dominating processes and the catena as the organizing landscape element in the given environmental setting enabled this. We employed the WASA (Water Availability in Semi-Arid environments) model for uncalibrated process-based water balance modelling and integrated a crop simulation subroutine based on the SWAP (Soil Water Atmosphere Plant) model to account for crop dynamics, feedbacks and yield estimation. While we found the data assessment strategy and the hydrological model application largely feasible, in terms of its accounting for scale, processes and model concepts, the simulation of feedbacks with crops was problematic. Contributing to the PUB issue, more general conclusions are drawn concerning spatially-distributed structural information and uncalibrated modelling.
Editor Z.W. Kundzewicz; Associate editor F. Hattermann  相似文献   
108.
We present observations and theoretical calculations to derive the vertical structure of and secondary circulation in jovian vortices, a necessary piece of information to ultimately explain the red color in the annular ring inside Jupiter’s Oval BA. The observations were taken with the near-infrared detector NIRC2 coupled to the adaptive optics system on the 10-m W.M. Keck telescope (UT 21 July 2006; UT 11 May 2008) and with the Hubble Space Telescope at visible wavelengths (UT 24 and 25 April 2006 using ACS; UT 9 and 10 May 2008 using WFPC2). The spatial resolution in the near-IR (∼0.1–0.15″ at 1–5 μm) is comparable to that obtained at UV–visible wavelengths (∼0.05–0.1″ at 250–890 nm). At 5 μm we are sensitive to Jupiter’s thermal emission, whereas at shorter wavelengths we view the planet in reflected sunlight. These datasets are complementary, as images at 0.25–1.8 μm provide information on the clouds/hazes in the troposphere–stratosphere, while the 5-μm emission maps yield information on deeper layers in the atmosphere, in regions without clouds. At the latter wavelength numerous tiny ovals can be discerned at latitudes between ∼45°S and 60°S, which show up as rings with diameters ?1000 km surrounding small ovals visible in HST data. Several white ovals at 41°S, as well as a new red oval that was discovered to the west of the GRS, also reveal 5-μm bright rings around their peripheries, which coincide with dark/blue rings at visible wavelengths. Typical brightness temperatures in these 5-μm bright rings are 225–250 K, indicative of regions that are cloud-free down to at least the ∼4 bar level, and perhaps down to 5–7 bar, i.e., well within the water cloud.Radiative transfer modeling of the 1–2 μm observations indicates that all ovals, i.e., including the Great Red Spot (GRS), Red Oval BA, and the white ovals at 41°S, are overall very similar in vertical structure. The main distinction between the ovals is caused by variations in the particle densities in the tropospheric–stratospheric hazes (2–650 mbar). These are 5–8 times higher above the red ovals than above the white ones at 41°S. The combination of the 5-μm rings and the vertical structure derived from near-IR data suggests anticyclones to extend vertically from (at least) the water cloud (∼5 bar) up to the tropopause (∼100–200 mbar), and in some cases into the stratosphere.Based upon our observations, we propose that air is rising along the center of a vortex, and descending around the outer periphery, producing the 5-μm bright rings. Observationally, we constrain the maximum radius of these rings to be less than twice the local Rossby deformation radius, LR. If the radius of the visible oval (i.e., the clouds that make the oval visible) is >3000 km, our observations suggest that the descending part of the secondary circulation must be within these ovals. For the Red Oval BA, we postulate that the return flow is at the location of its red annulus, which has a radius of ∼3000 km.We develop a theory for the secondary circulation, where air is (baroclinically) rising along the center of a vortex in a subadiabatic atmosphere, and descending at a distance not exceeding ∼2× the local Rossby deformation radius. Using this model, we find a timescale for mixing throughout the vortex of order several months, which suggests that the chromophores that are responsible for the red color of Oval BA’s red annulus must be produced locally, at the location of the annulus. This production most likely results from the adiabatic heating in the descending part of the secondary circulation. Such higher-than-ambient temperature causes NH3–ice to sublime, which will expose the condensation nuclei, such as the red chromophores.  相似文献   
109.
A relocation procedure to initialize tropical cyclones was developed to improve the representation of the initial conditions and the track forecast for Panasonic Weather Solutions Tropical Operational Forecasts. This scheme separates the vortex perturbation and environment field from the first guess, then relocates the initial vortex perturbations to Lhe observed position by merging them with the environment field. The relationships of wind vector components with stream function and velocity potential are used for separating the vortex disturbance from first guess. For the separation of scalars, a low-pass Barnes filter is employed. The irregular-shaped relocation area corresponding to the specific initial conditions is determined by mapping the edge of the vortex radius in 36 directions.Then, the non-vortex perturbations in the relocation area are removed by a two-pass Barnes filter to retain the vortex perturbations, while the variable fields outside the perimeter of the modified vortex are kept ide.ntical to the original first guess. The potential impacts of this scheme on track forecasts were examined for three hurricane cases in the 2011-12 hurricane season. The experimental results demonstrate that the initialization scheme is able to effectively separate the vortex field from the environment field and maintain a relatively balanced and accurate relocated first guess. As the initial track error is reduced, the following track forecasts are considerably improved. The 72-h average track forecast error was redu,~ed by 32.6% for the cold-start cases, and by 38.4% when using the full-cycling data assimilation because of the accumulatedL improvements from the initialization scheme.  相似文献   
110.
用边长变化结果计算地应变及块体划分   总被引:4,自引:4,他引:0  
在均匀应变的假设下,给出了由边长变化求解地应变的新方法,通过统计检验相邻三角形的最大主应变,可判别相邻测点是否位于同一个均匀应变体上,采用弹性位错理论设计的模拟算例表明,该方法能成功地将位于断层两侧的测量点分辨开。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号