首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   4篇
地球物理   3篇
地质学   36篇
海洋学   7篇
自然地理   1篇
  2022年   1篇
  2021年   7篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2016年   2篇
  2015年   2篇
  2013年   4篇
  2012年   4篇
  2011年   2篇
  2010年   4篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2003年   3篇
  2001年   2篇
  2000年   1篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
21.
The Easington Raised Beach, in Shippersea Bay, County Durham, is the most northerly known interglacial beach deposit in England. It lies directly on Magnesian Limestone bedrock at 33 m O.D. and is covered by glacial sediments attributed to the Devensian. Detailed sedimentological analysis suggests that it is an interglacial beach, which is supported by the presence of pebbles bored by marine organisms and littoral, temperate-climate, marine macro- and micro-fossils. It comprises beds of unconsolidated, bedded, imbricated, well-rounded sands and gravels, overlain by similar, but calcreted, deposits. The gravel fraction is dominated by Magnesian and Carboniferous limestone, with orthoquartzite, flint, and porphyries also present; these are far-travelled erratics that must have derived from the erosion of older glacially transported sediments. Previous workers have described erratics derived from the Oslofjord region of Norway in the raised beach gravel, although rocks diagnostic of a Scandinavian origin have not been recovered as part of this study. The heavy-mineral suite is rich in epidote, dolomite, clinopyroxenes, garnet, tourmaline, and micas. The beach was dated previously by conventional amino acid analysis of the shells, which suggested a Marine Isotope Stage (MIS) 7 age, albeit with a reworked component from MIS 9. This has been confirmed by new optically stimulated luminescence (OSL) dates, which indicate that the beach formed between 240 and 200 ka BP. New amino acid racemisation analyses, using a modified technique, broadly support this interpretation but must await more comparative data before they can be assessed fully. The strong indication of an MIS 7 age for the formation of the beach has implications for the uplift history of northeastern England during the Pleistocene, and indicates an uplift rate of 0.19 mm a−1. The stable isotope geochemistry indicates that the cementation occurred during an interglacial period, whilst U-Series dating of the cement indicates that cementation occurred mostly during the Holocene, and is genetically related to the overlying Devensian till. This work has formed part of a full re-appraisal of the glacial sequence in eastern County Durham, the results of which suggest that the Warren House Formation pre-dates the raised beach, and that the Devensian Horden Till overlies the raised beach.  相似文献   
22.
Full Tensor Gravity Gradiometry (FTG) data are routinely used in exploration programmes to evaluate and explore geological complexities hosting hydrocarbon and mineral resources. FTG data are typically used to map a host structure and locate target responses of interest using a myriad of imaging techniques. Identified anomalies of interest are then examined using 2D and 3D forward and inverse modelling methods for depth estimation. However, such methods tend to be time consuming and reliant on an independent constraint for clarification. This paper presents a semi‐automatic method to interpret FTG data using an adaptive tilt angle approach. The present method uses only the three vertical tensor components of the FTG data (Tzx, Tzy and Tzz) with a scale value that is related to the nature of the source (point anomaly or linear anomaly). With this adaptation, it is possible to estimate the location and depth of simple buried gravity sources such as point masses, line masses and vertical and horizontal thin sheets, provided that these sources exist in isolation and that the FTG data have been sufficiently filtered to minimize the influence of noise. Computation times are fast, producing plausible results of single solution depth estimates t hat relate directly to anomalies. For thick sheets, the method can resolve the thickness of these layers assuming the depth to the top is known from drilling or other independent geophysical data. We demonstrate the practical utility of the method using examples of FTG data acquired over the Vinton Salt Dome, Louisiana, USA and basalt flows in the Faeroe‐Shetland Basin, UK. A major benefit of the method is the ability to quickly construct depth maps. Such results are used to produce best estimate initial depth to source maps that can act as initial models for any detailed quantitative modelling exercises using 2D/3D forward/inverse modelling techniques.  相似文献   
23.
24.
25.
Along the West Greenland continental margin adjoining Baffin Bay, bathymetric data show a series of large submarine fans located at the mouths of cross‐shelf troughs. One of these fans, termed here ‘Uummannaq Fan’, is a trough‐mouth fan built largely by debris delivered from a fast‐flowing outlet of the Greenland Ice Sheet during past glacial maxima. Cores from this fan provide the first information on glacimarine sedimentary facies within a major West Greenland trough‐mouth fan and on the nature of Late Weichselian–Holocene glacigenic sediment delivery to this region of the Baffin Bay margin. Glacigenic debris flows deposited on the upper slope and extending to at least 1800 m water depth in front of the trough‐mouth are related to the remobilization of subglacial debris that was delivered onto the upper slope at times when an ice stream was positioned at the shelf edge. In contrast, sedimentary facies from the northern sector of the fan are characterized by hemipelagic and ice‐rafted sediments and turbidites; glacigenic debris flows are notably absent in cores from this region. Quantitative X‐ray diffraction studies of the <2‐mm sediment fraction indicate that the bulk of the sediment in the fan is derived from Uummannaq Trough but there are distinct intervals when sediment from northern Baffin Bay sources dominates, especially on the northern limit of the fan. These data demonstrate considerable variation in the nature of sediment delivery across the Uummannaq Fan when the Greenland Ice Sheet was at the shelf edge. They highlight the variability of glacimarine depositional processes operating on trough‐mouth fans on high‐latitude continental margins during the last glacial maximum and indicate that glacigenic debris flows are just one of a number of mechanisms by which such large depocentres form. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
26.
Digital elevation models of the area around the Solway Lowlands reveal complex subglacial bedform imprints relating the central sector of the LGM British and Irish Ice Sheet. Drumlin and lineation mapping in four case studies show that glacier flow directions switched significantly through time. These are summarised in four major flow phases in the region: Phase I flow was from a dominant Scottish dispersal centre, which transported Criffel granite erratics to the Eden Valley and forced Lake District ice eastwards over the Pennines at Stainmore; Phase II involved easterly flow of Lake District and Scottish ice through the Tyne Gap and Stainmore Gap with an ice divide located over the Solway Firth; Phase III was a dominant westerly flow from upland dispersal centres into the Solway lowlands and along the Solway Firth due to draw down of ice into the Irish Sea basin; Phase IV was characterised by unconstrained advance of Scottish ice across the Solway Firth. Forcing of a numerical model of ice sheet inception and decay by the Greenland ice core record facilitates an assessment of the potential for rapid ice flow directional switching during one glacial cycle. The model indicates that, after fluctuations of smaller radially flowing ice caps prior to 30 ka BP, the ice sheet grows to produce an elongate, triangular-shaped dome over NW England and SW Scotland at the LGM at 19.5 ka BP. Recession after 18.5 ka BP displays a complex pattern of significant ice flow directional switches over relatively short timescales, complementing the geomorphologically-based assessments of palaeo-ice dynamics. The palaeoglaciological implications of this combined geomorphic and modelling approach are that: (a) the central sector of the BIIS was as a major dispersal centre for only ca 2.5 ka after the LGM; (b) the ice sheet had no real steady state and comprised constantly migrating dispersal centres and ice divides; (c) subglacial streamlining of flow sets was completed over short phases of fast flow activity, with some flow reversals taking place in less than 300 years.  相似文献   
27.
The classical model of trough mouth fan (TMF) formation was developed in the Polar North Atlantic to explain large submarine fans situated in front of bathymetric troughs that extend across continental shelves to the shelf break. This model emphasizes the delivery of large volumes of subglacial sediment to the termini of ice streams flowing along troughs, and subsequent re‐deposition of this glacigenic sediment down the continental slope via debris‐flow processes. However, there is considerable variation in terms of the morphology and large‐scale sediment architecture of continental slopes in front of palaeo‐ice streams. This variability reflects differences in slope gradient, the relative contributions of meltwater sedimentation compared with debris‐flow deposition, and sediment supply/geology of the adjacent continental shelf. TMF development is favoured under conditions of a low (<1°) slope gradient; a passive‐margin tectonic setting; abundant, readily erodible sediments on the continental shelf ‐ and thus associated high rates of sediment delivery to the shelf edge; and a wide continental shelf. The absence of large sediment fans on continental slopes in front of cross‐shelf troughs should not, however, be taken to indicate the former absence of palaeo‐ice streams in the geological record.  相似文献   
28.
New optically stimulated luminescence dating and Bayesian models integrating all legacy and BRITICE-CHRONO geochronology facilitated exploration of the controls on the deglaciation of two former sectors of the British–Irish Ice Sheet, the Donegal Bay (DBIS) and Malin Sea ice-streams (MSIS). Shelf-edge glaciation occurred ~27 ka, before the global Last Glacial Maximum, and shelf-wide retreat began 26–26.5 ka at a rate of ~18.7–20.7 m a–1. MSIS grounding zone wedges and DBIS recessional moraines show episodic retreat punctuated by prolonged still-stands. By ~23–22 ka the outer shelf (~25 000 km2) was free of grounded ice. After this time, MSIS retreat was faster (~20 m a–1 vs. ~2–6 m a–1 of DBIS). Separation of Irish and Scottish ice sources occurred ~20–19.5 ka, leaving an autonomous Donegal ice dome. Inner Malin shelf deglaciation followed the submarine troughs reaching the Hebridean coast ~19 ka. DBIS retreat formed the extensive complex of moraines in outer Donegal Bay at 20.5–19 ka. DBIS retreated on land by ~17–16 ka. Isolated ice caps in Scotland and Ireland persisted until ~14.5 ka. Early retreat of this marine-terminating margin is best explained by local ice loading increasing water depths and promoting calving ice losses rather than by changes in global temperatures. Topographical controls governed the differences between the ice-stream retreat from mid-shelf to the coast.  相似文献   
29.
The offshore sector around Shetland remains one of the least well-studied parts of the former British–Irish Ice Sheet with several long-standing scientific issues unresolved. These key issues include (i) the dominance of a locally sourced ‘Shetland ice cap’ vs an invasive Fennoscandian Ice Sheet; (ii) the flow configuration and style of glaciation at the Last Glacial Maximum (i.e. terrestrial vs marine glaciation); (iii) the nature of confluence between the British–Irish and Fennoscandian Ice Sheets; (iv) the cause, style and rate of ice sheet separation; and (v) the wider implications of ice sheet uncoupling on the tempo of subsequent deglaciation. As part of the Britice-Chrono project, we present new geological (seabed cores), geomorphological, marine geophysical and geochronological data from the northernmost sector of the last British–Irish Ice Sheet (north of 59.5°N) to address these questions. The study area covers ca. 95 000 km2, an area approximately the size of Ireland, and includes the islands of Shetland and the surrounding continental shelf, some of the continental slope, and the western margin of the Norwegian Channel. We collect and analyse data from onshore in Shetland and along key transects offshore, to establish the most coherent picture, so far, of former ice-sheet deglaciation in this important sector. Alongside new seabed mapping and Quaternary sediment analysis, we use a multi-proxy suite of new isotopic age assessments, including 32 cosmogenic-nuclide exposure ages from glacially transported boulders and 35 radiocarbon dates from deglacial marine sediments, to develop a synoptic sector-wide reconstruction combining strong onshore and offshore geological evidence with Bayesian chronosequence modelling. The results show widespread and significant spatial fluctuations in size, shape and flow configuration of an ice sheet/ice cap centred on, or to the east of, the Orkney–Shetland Platform, between ~30 and ~15 ka BP. At its maximum extent ca. 26–25 ka BP , this ice sheet was coalescent with the Fennoscandian Ice Sheet to the east. Between ~25 and 23 ka BP the ice sheet in this sector underwent a significant size reduction from ca. 85 000 to <50 000 km2, accompanied by several ice-margin oscillations. Soon after, connection was lost with the Fennoscandian Ice Sheet and a marine corridor opened to the east of Shetland. This triggered initial (and unstable) re-growth of a glaciologically independent Shetland Ice Cap ca. 21–20 ka BP with a strong east–west asymmetry with respect to topography. Ice mass growth was followed by rapid collapse, from an area of ca. 45 000 km2 to ca. 15 000 km2 between 19 and 18 ka BP , stabilizing at ca. 2000 km2 by ~17 ka BP. Final deglaciation of Shetland occurred ca. 17–15 ka BP , and may have involved one or more subsidiary ice centres on now-submerged parts of the continental shelf. We suggest that the unusually dynamic behaviour of the northernmost sector of the British–Irish Ice Sheet between 21 and 18 ka BP – characterized by numerous extensive ice sheet/ice mass readvances, rapid loss and flow redistributions – was driven by significant changes in ice mass geometry, ice divide location and calving flux as the glaciologically independent ice cap adjusted to new boundary conditions. We propose that this dynamism was forced to a large degree by internal (glaciological) factors specific to the strongly marine-influenced Shetland Ice Cap.  相似文献   
30.
The Uummannaq region is a mosaic of glacial landsystems, consistent with hypothesized landscape distribution resulting from variations in subglacial thermal regime. The region is dominated by selective linear erosion that has spatially and altitudinally partitioned the landscape. Low altitude areas are dominated by glacial scour and higher elevations are dominated by plateaux or mountain valley and cirque glaciers. The appearance and nature of each landscape type varies locally with altitude and latitude, as a function of bedrock geology and average glacial conditions. Selective linear erosion has been a primary control on landscape distribution throughout Uummannaq, leading to plateau formation and the growth of a coalescent fjord system in the Uummannaq region. This has allowed the development of the Uummannaq ice stream's (UIS) onset zone during glacial periods. Fjord development has been enhanced by a downstream change in geology to less‐resistant lithologies, increasing erosional efficiency and allowing a single glacial channel to develop, encouraging glacier convergence and the initiation of ice streaming. The landscape has been affected by several periods of regional uplift from 33 Ma to present, and has been subject to subsequent fluvial and glacial erosion. Uplift has removed surfaces from the impact of widespread warm‐based glaciation, leaving them as relict landsurfaces. The result of this is a regional altitude‐dependent continuum of glacial modification, with extreme differences in erosion between high and low elevation surfaces. This study indicates that processes of long‐term uplift, glacial erosion/protection and spatial variability in erosion intensity have produced a highly partitioned landscape.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号