首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   14篇
  国内免费   1篇
大气科学   8篇
地球物理   19篇
地质学   85篇
海洋学   11篇
天文学   11篇
自然地理   8篇
  2022年   1篇
  2021年   10篇
  2020年   7篇
  2019年   4篇
  2018年   4篇
  2016年   5篇
  2015年   7篇
  2014年   7篇
  2013年   22篇
  2012年   13篇
  2011年   10篇
  2010年   10篇
  2009年   12篇
  2008年   5篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   4篇
  2001年   3篇
  2000年   1篇
  1997年   3篇
  1996年   1篇
  1993年   1篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1976年   1篇
排序方式: 共有142条查询结果,搜索用时 15 毫秒
131.
The early (Devonian) collisional stage in SW Iberia has been investigated through the analysis of deformation in the Cubito‐Moura schists, the main lithology of an Allochthonous Complex putatively rooted in the suture between the Ossa‐Morena and South Portuguese zones. The first deformation in these schists (D1) is recorded as a S1‐L1 mylonitic fabric well preserved in early quartz veins. Subsequent D2 deformation caused the main folds and the main (S2) foliation. After restoration, the stretching lineation (L1) trends at a small angle with the Ossa‐Morena/South Portuguese suture. This trend, together with the top‐to‐the‐east kinematics determined from quartz microfabric is indicative of an oblique left‐lateral collisional scenario in SW Iberia. Chlorite–white K‐mica–quartz ± chloritoid multi‐equilibrium calculations yield P–T conditions in the range 0.9–1.2 GPa and 300–400 °C, during the first collisional stage. P–T conditions during D2 were 0.3–0.8 GPa and 400–450 °C, thus indicating an important stage of exhumation of the Allochthonous Complex during these two collisional events, after subduction of the Ossa‐Morena Zone margin under the South Portuguese Zone continental crust. In the general context of the Variscan orogen, dominated by dextral collision, the left‐lateral convergence in SW Iberia can be explained in terms of the Avalonian salient represented by the South Portuguese Zone, which would impinge between Iberia and Morocco.  相似文献   
132.
The Sierra Nevada is the highest mountain system on the Iberian Peninsula (Mulhacén 3482 m; Veleta 3308 m) and is located in the extreme SE region of Spain (lat 37°N, long 3°W). Bibliographic resources, particularly from the eighteenth to twentieth centuries, provide insights into the changing summit landscape as the effects of cold, ice, snow and wind shaped its morphology. The selected references emphasize the Sierra's evolving climate reflected in the glaciers and snow hollows, and in the sparse vegetation above certain altitudes. Scientists had established bioclimatic conditions for the entire range in the early nineteenth century, and their works reflect the progression of ideas, particularly in the area of natural sciences, that influenced the period chosen for this study. This information, in addition to current knowledge about the morphogenetic dynamics of the Sierra Nevada, provides the basis for a comparison of the dominant environments from the Little Ice Age to the present, using the most significant high mountain morphological features as a guide. The most relevant findings indicate that cold climate processes (soli‐gelifluction, frost creep and nivation) were more predominant during the eighteenth and nineteenth centuries than they are today.  相似文献   
133.
 The 1783–1784 Laki tholeiitic basalt fissure eruption in Iceland was one of the greatest atmospheric pollution events of the past 250 years, with widespread effects in the northern hemisphere. The degassing history and volatile budget of this event are determined by measurements of pre-eruption and residual contents of sulfur, chlorine, and fluorine in the products of all phases of the eruption. In fissure eruptions such as Laki, degassing occurs in two stages: by explosive activity or lava fountaining at the vents, and from the lava as it flows away from the vents. Using the measured sulfur concentrations in glass inclusions in phenocrysts and in groundmass glasses of quenched eruption products, we calculate that the total accumulative atmospheric mass loading of sulfur dioxide was 122 Mt over a period of 8 months. This volatile release is sufficient to have generated ∼250 Mt of H2SO4 aerosols, an amount which agrees with an independent estimate of the Laki aerosol yield based on atmospheric turbidity measurements. Most of this volatile mass (∼60 wt.%) was released during the first 1.5 months of activity. The measured chlorine and fluorine concentrations in the samples indicate that the atmospheric loading of hydrochloric acid and hydrofluoric acid was ∼7.0 and 15.0 Mt, respectively. Furthermore, ∼75% of the volatile mass dissolved by the Laki magma was released at the vents and carried by eruption columns to altitudes between 6 and 13 km. The high degree of degassing at the vents is attributed to development of a separated two-phase flow in the upper magma conduit, and implies that high-discharge basaltic eruptions such as Laki are able to loft huge quantities of gas to altitudes where the resulting aerosols can reside for months or even 1–2 years. The atmospheric volatile contribution due to subsequent degassing of the Laki lava flow is only 18 wt.% of the total dissolved in the magma, and these emissions were confined to the lowest regions of the troposphere and therefore important only over Iceland. This study indicates that determination of the amount of sulfur degassed from the Laki magma batch by measurements of sulfur in the volcanic products (the petrologic method) yields a result which is sufficient to account for the mass of aerosols estimated by other methods. Received: 30 May 1995 / Accepted: 19 April 1996  相似文献   
134.
We present Infrared Space Observatory (ISO)Short Wavelength Spectrometer (SWS) observations for 16Wolf–Rayet ([WR]) planetary nebulae (PNe) in the range from 2.4 to16.5 m with the aim of analyzing the dust features present inthis group of objects. We have found that Policyclic AromaticHydrocarbon (PAH) molecular bands are present in most of the observed[WR] planetary nebulae with clear exception for K 2–16 among latetype [WC] stars.  相似文献   
135.
The Paris Agreement is the last hope to keep global temperature rise below 2°C. The consensus agrees to holding the increase in global average temperature to well below 2°C above pre-industrial levels, and to aim for 1.5°C. Each Party’s successive nationally determined contribution (NDC) will represent a progression beyond the party’s then current NDC, and reflect its highest possible ambition. Using Ireland as a test case, we show that increased mitigation ambition is required to meet the Paris Agreement goals in contrast to current EU policy goals of an 80–95% reduction by 2050. For the 1.5°C consistent carbon budgets, the technically feasible scenarios' abatement costs rise to greater than €8,100/tCO2 by 2050. The greatest economic impact is in the short term. Annual GDP growth rates in the period to 2020 reduce from 4% to 2.2% in the 1.5°C scenario. While aiming for net zero emissions beyond 2050, investment decisions in the next 5–10 years are critical to prevent carbon lock-in.

Key policy insights

  • Economic growth can be maintained in Ireland while rapidly decarbonizing the energy system.

  • The social cost of carbon needs to be included as standard in valuation of infrastructure investment planning, both by government finance departments and private investors.

  • Technological feasibility is not the limiting factor in achieving rapid deep decarbonization.

  • Immediate increased decarbonization ambition over the next 3–5 years is critical to achieve the Paris Agreement goals, acknowledging the current 80–95% reduction target is not consistent with temperature goals of ‘well below’ 2°C and pursuing 1.5°C.

  • Applying carbon budgets to the energy system results in non-linear CO2 emissions reductions over time, which contrast with current EU policy targets, and the implied optimal climate policy and mitigation investment strategy.

  相似文献   
136.
Hazardous events related to atmospheric precipitation depend not only on the intensity of surface precipitation,but also on its type.Uncertainty related to determination of the precipitation type(PT)leads to financial losses in many areas of human activity,such as the power industry,agriculture,transportation,and many more.In this study,we use machine learning(ML)algorithms with the data fusion approach to more accurately determine surface PT.Based on surface synoptic observations,ERA5 reanalysis,and radar data,we distinguish between liquid,mixed,and solid precipitation types.The study domain considers the entire area of Poland and a period from 2015 to 2017.The purpose of this work is to address the question:“How can ML techniques applied in observational and NWP data help to improve the recognition of the surface PT?”Despite testing 33 parameters,it was found that a combination of the near-surface air temperature and the depth of the warm layer in the 0-1000 m above ground level(AGL)layer contains most of the signal needed to determine surface PT.The accrued probability of detection for liquid,solid,and mixed PTs according to the developed Random Forest model is 98.0%,98.8%,and 67.3%,respectively.The application of the ML technique and data fusion approach allows to significantly improve the robustness of PT prediction compared to commonly used baseline models and provides promising results for operational forecasters.  相似文献   
137.
Abstract

Observations from the jökulhlaup from Grímsvötn in Vatnajökull, south-eastern Iceland, in 1996 indicate that the jökulhlaup was initiated by the movement of a localised pressure wave that travelled 50 km in 10 h from Grimsvötn to the terminus, forming a subglacial pathway along the glacier bed. Shortly after this wave reached the terminus, the jökulhlaup was flowing at a high discharge through a tunnel that would have needed much longer time to form by ice melting as assumed in existing theories of jökulhlaups. Frozen sediments formed in crevasses and frazil ice on the surface of the flood waters indicate the flow of supercooled water in the terminus region, demonstrating that the rate of heat transfer from subglacial flood water to the overlying ice is greatly underestimated in current theories.  相似文献   
138.
During the last glacial cycle an intriguing feature of the British-Irish Ice Sheet was the North Sea Lobe (NSL); fed from the Firth of Forth and which flowed south and parallel to the English east coast. The controls on the formation and behaviour of the NSL have long been debated, but in the southern North Sea recent work suggests the NSL formed a dynamic, oscillating terrestrial margin operating over a deforming bed. Further north, however, little is known of the behaviour of the NSL or under what conditions it operated. This paper analyses new acoustic, sedimentary and geomorphic data in order to evaluate the glacial landsystem imprint and deglacial history of the NSL offshore from NE England. Subglacial tills (AF2/3) form a discontinuous mosaic interspersed with bedrock outcrops across the seafloor, with the partial excavation and advection of subglacial sediment during both advance and retreat producing mega-scale glacial lineations and grounding zone wedges. The resultant ‘mixed-bed’ glacial landsystem is the product of a dynamic switch from a terrestrial piedmont-lobe margin with a net surplus of sediment to a partially erosive, quasi-stable, marine-terminating, ice stream lobe as the NSL withdrew northwards. Glaciomarine sediments (AF4) drape the underlying subglacial mixed-bed imprint and point to a switch to tidewater conditions between 19.9 and 16.5 ka cal BP as the North Sea became inundated. The dominant controls on NSL recession during this period were changing ice flux through the Firth of Forth ice stream onset zone and water depths at the grounding line; the development of the mixed-bed landsystem being a response to grounding line instability. © 2018 John Wiley & Sons, Ltd.  相似文献   
139.
Hybrid event beds form when turbidity currents that transport or locally acquire significant quantities of mud decelerate. The mud dampens turbulence driving flow transformations, allowing both mud and sand to settle into dense, near-bed fluid layers and debris flows. Quantifying details of the mud distribution vertically in what are often complex tiered deposits is critical to reconstructing flow processes and explaining the diverse bed types left by mud-bearing gravity flows. High-resolution X-ray fluorescence core scanning provides continuous vertical compositional profiles that can help to constrain mud distribution at sub-millimetre scale, offering a significant improvement over discrete sampling. The approach is applied here to cores acquired from the Pennsylvanian Ross Sandstone Formation, western Ireland, where a range of hybrid event beds have been identified. Raw X-ray fluorescence counts are calibrated against element concentrations and mineral abundances determined on coincident core plugs, with element and element log-ratios used as proxies to track vertical changes in abundances of quartz, illite (including mica), chlorite and calcite cement. New insights include ‘stepped’ (to higher values) as opposed to ‘saw-tooth’ vertical changes in mud content and the presence of compositional banding that would otherwise be overlooked. Hybrid event beds in basin floor sheets that arrived ahead of the prograding fan system have significantly cleaner sandy components than those in mid-fan lobes. The latter may imply that the heads of the currents emerging from mid-fan channels entrained significant mud immediately before they collapsed. Many of the H3 debrites are bipartite with a sandier H3a division attributed to re-entrainment and mixing of a trailing debris or fluid mud flow (H3b) with sand left by the forward part of the flow. Hybrid event bed structure may thus partly reflect substrate interaction and mixing during deposition, and the texture of the bed divisions may not simply mirror those in the suspensions from which they formed.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号