首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85590篇
  免费   1145篇
  国内免费   528篇
测绘学   1757篇
大气科学   5611篇
地球物理   16288篇
地质学   30864篇
海洋学   7872篇
天文学   19912篇
综合类   222篇
自然地理   4737篇
  2022年   620篇
  2021年   1048篇
  2020年   1116篇
  2019年   1248篇
  2018年   2556篇
  2017年   2362篇
  2016年   2720篇
  2015年   1358篇
  2014年   2621篇
  2013年   4491篇
  2012年   2864篇
  2011年   3698篇
  2010年   3374篇
  2009年   4264篇
  2008年   3720篇
  2007年   3833篇
  2006年   3555篇
  2005年   2528篇
  2004年   2451篇
  2003年   2288篇
  2002年   2278篇
  2001年   1971篇
  2000年   1958篇
  1999年   1537篇
  1998年   1597篇
  1997年   1467篇
  1996年   1246篇
  1995年   1245篇
  1994年   1044篇
  1993年   1013篇
  1992年   935篇
  1991年   973篇
  1990年   938篇
  1989年   818篇
  1988年   753篇
  1987年   887篇
  1986年   775篇
  1985年   946篇
  1984年   1071篇
  1983年   1031篇
  1982年   952篇
  1981年   893篇
  1980年   793篇
  1979年   748篇
  1978年   728篇
  1977年   622篇
  1976年   626篇
  1975年   613篇
  1974年   590篇
  1973年   658篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
711.
712.
The results of comprehensive geological and metallogenic studies of the Greater Altai are presented. This project has been carried out since 1997 under the guidance of Academician G.N. Shcherba. The importance of these investigations is determined by the need to enhance and further develop mineral resources of nonferrous, noble, rare, and other metals for operating mining and metallurgical enterprises of Kazakhstan. The great body of information on the geology, geophysics, and metallogeny of the region obtained over many years has been integrated on the basis of new global tectonics. The Greater Altai embraces the Hercynides of the Rudny Altai, Qalba-Narym, West Qalba, Zharma-Saur, and the adjacent territories of Russia and China. The present-day tectonic units are considered to be detached blocks of ancient continental massifs that drifted in the Paleoasian ocean and then amalgamated into the structure of the Greater Altai during the Hercynian collision. The tectonic and metallogenic demarcation of the studied territory made possible the recognition of the Rudny Altai, Qalba-Narym, West Qalba, and Zharma-Saur ore belts, different in geology, geodynamic evolution, and metallogeny. The formation conditions and localization of volcanic-hosted massive sulfide, gold, and rare-metal deposits pertaining to certain ore-bearing geochronological levels were specified, and the potential of the region for various mineral resources was estimated.  相似文献   
713.
Weathering of pyrite in the core recovered from black shales of the Bazhenovo Formation (Upper Jurassic-Lower Cretaceous) in the West Siberian marine basin promoted the successive formation of melanterite (FeSO4 · 7H2O) and szomolnokite (FeSO4 · H2O). Szomolnokite was detected in West Siberia for the first time.  相似文献   
714.
Outcrops of the Early Jurassic Navajo Sandstone in southern Utah and northern Arizona, south-western USA are being actively eroded by sand-laden, south-westerly winds. Small-scale stepped topography with risers facing into the wind develops even on steep canyon walls when wind-swept grains strike the rock at a low angle. Photosynthetic, endolithic microbes directly underlie most outcrop surfaces; the crusts formed by these organisms are essential to formation of the small-scale steps. Wind erosion of highlands also forms troughs and pits that are tens of metres across. The pits have deeply scalloped, overhanging walls, and contain central domes surrounded by 'moats' filled with dune sand. Wind erosion of aeolian sandstone is favoured by a positive feedback mechanism in which grains that are liberated from outcrops by impacting particles become a fresh supply of pre-sorted abrasive particles for further attack.  相似文献   
715.
Sedimentologic analysis of cores from wells sunk in the Vankor petroleum field allowed refinement of the accumulation conditions producing the sandy strata of the Nizhnyaya Kheta River (Nizhnekhetsky) Formation accumulated in the coastal marine zone and of the Yakovlevo (Yakovlevsky) Formation accumulated under alluvial-deltaic conditions. Petrographic examination of the sandstones added information on the sources, transport, and accumulation conditions of the terrigenous material in the northeastern marginal part of the West Siberian sedimentation basin.  相似文献   
716.
Application and development of municipal solid waste treatment technology depends on various socio-economic and environmental factors. All those factors are work as development drivers for waste management systems. The study aims to identify key drivers from case studies of waste management development trend in Sweden. Social, economic and environmental drivers are identified and presented in this study. The study identifies personal behaviour, local waste management practice, consumption and generation of waste as the key social drivers. Resource value of waste, economic benefit from waste treatment facilities and landfill tax have been acknowledged as economic drivers for developing waste treatment technology. Moreover, global climate change, environmental movement and awareness have been working as environmental drivers for developing various waste treatment methods in Sweden. In addition, the study aims to analyse emerging waste treatment technologies based on a number of literature review and questionnaire survey. Dry composting, pyrolysis-gasification, plasma arc, and anaerobic digestion have been identified as potential emerging technologies for waste management systems in Sweden.  相似文献   
717.
Division of sedimentary strata according to groundwater chemistry is discussed with implications for petroleum reservoir potential. It is suggested to process multiparametric water chemistry data from West Siberia using formalized clustering techniques. The efficiency of this approach has been tested for Neocomian clinoform reservoirs with reference to regional-scale appraisal and subregional petroleum division.  相似文献   
718.
Summary Lovozero, the largest of the world’s layered peralkaline intrusions, includes gigantic deposits of Nb + REE-loparite ore. Loparite, (Na,Ce,Ca)2(Ti,Nb)2O6, became a cumulus phase after crystallisation of about 35% of the ‘Differentiated Complex’, and its compositional evolution has been investigated through a 2.35 km section of the intrusion. The composition of the cumulus loparite changes systematically upwards through the intrusion with an increase in Na, Sr, Nb and Th and decrease in REE and Ti. This main trend of loparite evolution records differentiation of the peralkaline magma through crystallisation of 1600 m of the intrusion. The formation of the loparite ores was the result of several factors including the chemical evolution of the highly alkaline magma and mechanical accumulation of loparite at the base of a convecting unit. At later stages of evolution, when concentrations of alkalis and volatiles reached very high levels, loparite reacted with the residual melt to form a variety of minerals including barytolamprophyllite, lomonosovite, steenstrupine-(Ce), vuonnemite, nordite, nenadkevichite, REE, Sr-rich apatite, vitusite-(Ce), mosandrite, monazite-(Ce), cerite and Ba, Si-rich belovite. The absence of loparite ore in the “Eudialyte complex” is likely to be a result of the wide crystallisation field of lamprophyllite, which here became a cumulus phase. Received November 6, 2000; revised version accepted January 18, 2001  相似文献   
719.
U-Pb isotopic thermochronometry of rutile, apatite and titanite from kimberlite-borne lower crustal granulite xenoliths has been used to constrain the thermal evolution of Archean cratonic and Proterozoic off-craton continental lithosphere beneath southern Africa. The relatively low closure temperature of the U-Pb rutile thermochronometer (~400-450 °C) allows its use as a particularly sensitive recorder of the establishment of "cratonic" lithospheric geotherms, as well as subsequent thermal perturbations to the lithosphere. Contrasting lower crustal thermal histories are revealed between intracratonic and craton margin regions. Discordant Proterozoic (1.8 to 1.0 Ga) rutile ages in Archean (2.9 to 2.7 Ga) granulites from within the craton are indicative of isotopic resetting by marginal orogenic thermal perturbations influencing the deep crust of the cratonic nucleus. In Proterozoic (1.1 to 1.0 Ga) granulite xenoliths from the craton-bounding orogenic belts, rutiles define discordia arrays with Neoproterozoic (0.8 to 0.6 Ga) upper intercepts and lower intercepts equivalent to Mesozoic exhumation upon kimberlite entrainment. In combination with coexisting titanite and apatite dates, these results are interpreted as a record of postorogenic cooling at an integrated rate of approximately 1 °C/Ma, and subsequent variable Pb loss in the apatite and rutile systems during a Mesozoic thermal perturbation to the deep lithosphere. Closure of the rutile thermochronometer signals temperatures of 𙠂 °C in the lower crust during attainment of cratonic lithospheric conductive geotherms, and such closure in the examined portions of the "off-craton" Proterozoic domains of southern Africa indicates that their lithospheric thermal profiles were essentially cratonic from the Neoproterozoic through to the Late Jurassic. These results suggest similar lithospheric thickness and potential for diamond stability beneath both Proterozoic and Archean domains of southern Africa. Subsequent partial resetting of U-Pb rutile and apatite systematics in the cratonic margin lower crust records a transient Mesozoic thermal modification of the lithosphere, and modeling of the diffusive Pb loss from lower crustal rutile constrains the temperature and duration of Mesozoic heating to 𙡦 °C for ₞ ka. This result indicates that the thermal perturbation is not simply a kimberlite-related magmatic phenomenon, but is rather a more protracted manifestation of lithospheric heating, likely related to mantle upwelling and rifting of Gondwana during the Late Jurassic to Cretaceous. The manifestation of this thermal pulse in the lower crust is spatially and temporally correlated with anomalously elevated and/or kinked Cretaceous mantle paleogeotherms, and evidence for metasomatic modification in cratonic mantle peridotite suites. It is argued that most of the geographic differences in lithospheric thermal structure inferred from mantle xenolith thermobarometry are likewise due to the heterogeneous propagation of this broad upper mantle thermal anomaly. The differential manifestation of heating between cratonic margin and cratonic interior indicates the importance of advective heat transport along pre-existing lithosphere-scale discontinuities. Within this model, kimberlite magmatism was a similarly complex, space- and time-dependent response to Late Mesozoic lithospheric thermal perturbation.  相似文献   
720.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号