首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   2篇
  国内免费   1篇
测绘学   11篇
大气科学   11篇
地球物理   41篇
地质学   26篇
海洋学   8篇
天文学   4篇
综合类   2篇
自然地理   12篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   6篇
  2015年   1篇
  2014年   3篇
  2013年   8篇
  2012年   7篇
  2011年   5篇
  2010年   3篇
  2009年   7篇
  2008年   10篇
  2007年   5篇
  2006年   3篇
  2005年   4篇
  2004年   1篇
  2003年   3篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   4篇
  1976年   1篇
  1973年   1篇
  1971年   1篇
  1890年   1篇
排序方式: 共有115条查询结果,搜索用时 11 毫秒
51.
52.
Melt generation and extraction along the Hawaiian volcanic chain should be largely controlled by the thermal structure of the Hawaiian swell and the heat source underneath it. We simulate numerically the time- and space-dependent evolution of Hawaiian volcanism in the framework of thermal evolution of the Hawaiian swell, constrained by residual topography, geoid anomalies, and anomalous heat flow along the Hawaiian volcanic chain. The transient heat transfer problem with melting relationships and variable boundary conditions is solved in cylindrical coordinates using a finite difference method. The model requires the lithosphere to be thinned mechanically by mantle plume flow. Melting starts quickly near the base of the plate when the hotspot is encountered. Thermal perturbation and partial melting are largely concentrated in the region where the original lithosphere is thinned and replaced by the mantle flow. The pre-shield Loihi alkalic and tholeiitic basalts are from similar sources, which are a mixture of at least three mantle components: the mantle plume, asthenosphere, and the lower lithosphere. The degree of partial melting averages 10–20%, with a peak value of 30% near the plume center. As a result of continuous compaction, melts are extracted from an active partial melting zone of about 10–20 km thickness, which moves upwards and laterally as the heating and compaction proceed. The rate of melt extraction from the swell increases rapidly to a maximum value of 1 × 105 km3/m.y. over the center of the heat source, corresponding to eruption of large amounts of tholeiitic lavas during the shield-building stage. This volume rate is adequate to account for the observed thickness of the Hawaiian volcanic ridge. Melts from direct partial melting of the mantle plume at depth may be important or even dominant at this stage, although the amount is uncertain. At the waning stage, mixing of melts from the mantle flow pattern with those from low-degree partial melting of the lithosphere may produce postshield alkalic basalts. After the plate moves off the heat source, continuous conductive heating can cause very low degree partial melting (less than 1%) of the lithosphere at shallow depths for about one million years. This process may be responsible for producing post-erosional alkalic basalts. The extraction time for removing such small amount of melts is about 0.4–2 m.y., similar to the time gap between the eruption of post-erosional alkalic lavas and the shield-building stage. Our results show that multi-stage Hawaiian volcanism and the general geochemical characteristics of Hawaiian basalts can be explained by a model of plume-plate interaction.  相似文献   
53.
Abstract– We describe the geological, morphological, and climatic setting of the San Juan meteorite collection area in the Central Depression of the Atacama Desert (Chile). Our recovery activities yielded 48 meteorites corresponding to a minimum of 36 different falls within a 3.88 km2 area. The recovery density is in the range 9–12 falls km?2 depending on pairing, making it the densest among meteorite collection areas in hot deserts. This high meteorite concentration is linked to the long‐standing hyperaridity of the area, the stability of the surface pebbles (> Ma), and very low erosion rates of surface pebbles (approximately 30 cm Ma?1 maximum). The San Juan meteorite population is characterized by old terrestrial ages that range from zero to beyond 40 ka, and limited weathering compared with other dense collection areas in hot desert. Chemical weathering in San Juan is slow and mainly controlled by the initial porosity of meteorites. As in the Antarctic and other hot deserts, there is an overabundance of H chondrites and a shortage of LL chondrites compared with the modern falls population, suggesting a recent (< few ka) change in the composition of the meteorite flux to Earth.  相似文献   
54.
This study examines the role of vegetation dynamics in regional predictions of future climate change in western Africa using a dynamic vegetation model asynchronously coupled to a regional climate model. Two experiments, one for present day and one for future, are conducted with the linked regional climate-vegetation model, and the third with the regional climate model standing alone that predicts future climate based on present-day vegetation. These simulations are so designed in order to tease out the impact of structural vegetation feedback on simulated climate and hydrological processes. According to future predictions by the regional climate-vegetation model, increase in LAI is widespread, with significant shift in vegetation type. Over the Guinean Coast in 2084–2093, evergreen tree coverage decreases by 49% compared to 1984–1993, while drought deciduous tree coverage increases by 56%. Over the Sahel region in the same period, grass cover increases by 31%. Such vegetation changes are accompanied by a decrease of JJA rainfall by 2% over the Guinean Coast and an increase by 23% over the Sahel. This rather small decrease or large increase of precipitation is largely attributable to the role of vegetation feedback. Without the feedback effect from vegetation, the regional climate model would have predicted a 5% decrease of JJA rainfall in both the Guinean Coast and the Sahel as a result of the radiative and physiological effects of higher atmospheric CO2 concentration. These results demonstrate that climate- and CO2-induced changes in vegetation structure modify hydrological processes and climate at magnitudes comparable to or even higher than the radiative and physiological effects, thus evincing the importance of including vegetation feedback in future climate predictions.  相似文献   
55.
The case is made for modifying the equations of general relativity so as to permit a time-variable gravitational constant.  相似文献   
56.
Leads in basaltic suites from seven oceanic islands form linear arrays on206Pb/204Pb versus207Pb/204Pb diagrams. These arrays are more reasonably interpreted as secondary isochrons than as mixing lines, because of their systematic relationship. Separate two-stage histories calculated for the leads from each island indicate that the source materials for the magmas were derived from a single primary reservoir with present238U/204Pb of 7.91 ± 0.04 by secondary enrichment in U/Pb at different times from 2.5 to 1 Ga ago. This is confirmed by a plot of isochron slope versus intercept, on which the points describing each island's Pb-Pb array all lie very near a single straight line. The isochrons for the Canary Islands and Hawaii, at least, are significantly different. The208Pb/204Pb versus206Pb/204Pb relationships are less coherent. The lead isotopic characteristics are consistent with a model in which lead in the oceanic island magmas is derived from ancient subducted oceanic crust. In particular, this explains the close relationship between lead in mid-ocean ridge and oceanic island basalts without invoking mixing.  相似文献   
57.
58.
Worldwide, evidences of water cycle alteration and fresh water resources depletion are frequently reported with various magnitudes. This alteration in the hydrologic cycle is often regarded as a signal of the actual climate change. However, the debate on climate change seems to have preferentially focused on global-scale patterns such that the rich knowledge gathered in the domain is virtually less integrated to decision making at the watershed level. Indeed, the watershed apprehension of climate change is probably an imperative for sustainable water resources planning. The scope of the present study aligns with that imperative as it aims at conciliating patterns of climate change with observations of hydrologic alterations at the watershed level. Specifically, the paper describes the interplay between land-cover changes and the terrestrial water cycle disturbances under climate change at the global level. Thereafter, it reports a watershed-level analysis of streamflow, land-cover, PET and precipitation alteration. Specially, the case study focused on the Brazos River basin, located in the USA and shared by the states of Texas and New Mexico. From both regional and watershed prospects, signals of hydrologic alteration during the time period 1955–2014 are highlighted and then implications of climate change are discussed. The results show an overall longitudinal gradient of precipitation changes and a latitudinal gradient of PET changes across the Brazos watershed. However, these gradients of changes seem to be driven by regional climate components which extend beyond the physical boundary of the Brazos watershed. Mann–Kendall’s analysis of discharge time series (annual average, minimum and maximum) at 10 different stations exhibits meaningful contrasts from upstream to downstream. An assessment of land-cover changes shows critical patterns of landscape change across the watershed. The analyses depicted signals of urbanization sprawl and land-cover degradation. Specially, the significant statistical relationships observed between the time series of maximum green vegetation fraction (MGVF) and streamflow also indicate that the origin of the observed hydrologic alteration is anthropogenic. Ultimately, the results are discussed within the scope of climate change.  相似文献   
59.
Volcanic flows of Late Paleozoic age in the Pelagonian zone belonging to the internal Hellenic zones, have been studied, for the first time, from petrographical and geochemical viewpoints.

Relevant petrographical data and the geochemical analysis lead us to consider that:

1. (a) the basic lavas can be linked to tholeitic basalts.

2. (b) the acid lavas are associated to metarhyolites.

3. (c) the two magmatic flows do not originate from the same parental magma.

The geochemical results obtained, compared to those from other deposits of nearly the same age outcropping around the Mediterranean, indicate that the latest Hercynian volcanism has been affected by intra-plate distension phenomena preceding the great Lower Mesozoic break-up which caused the formation of the Tethys Ocean.

It is remarkable that in the Mesogean Basin the sedimentary environment is nearly similar to that described in this paper. The volcanic flows end up in a sialic sedimentary basin containing coarse detritic formations that resulted from erosion of the Variscan chain along the southern margin of the European continent.

Abstract

Dans la zone pélagonienne appartenant aux zones internes helléniques, des coulées volcaniques d'âge paléozoïque supérieur sont étudiées, pour la première fois, pétrographiquement et géochimiquement. Les différents agencements pétrographiques et les analyses géochimiques nous apprennent que:

1. (a) les laves basiques peuvent être rattachées á la famille des basaltes tholéitiques.

2. (b) les laves acides s'apparentent aux métarhyolites.

La quantification des différents éléments analyses nous amène á considérer que les deux lignées magmatiques ne sont pas issues d'un même magma parental.

La comparaison des résultats géochimiques avec d'autres gisements, sensiblement contemporains affleurant autour de la Méditerranée actuelle, nous indique que le volcanisme fini-hercynien est assujetti á des phénomènes de distension intraplaques, préparatoires á la grande fracturation mésozoïque inférieure ayant donné naissance á l'océan téthysien.

Ce qui est remarquable dans le bassin mésogéen, c'est que l'environnement sédimentaire est toujours, á peu près, comparable á celui que nous décrivons ici. En effet, les coulées volcaniques s'épanchent dans un bassin sédimentaire á fond sialique au sein de formations détritiques grossières nées de la destruction de la chaîne varisque sur la bordure méridionale du continent europeen.  相似文献   

60.
http://www.sciencedirect.com/science/article/pii/S1674987113000327   总被引:1,自引:0,他引:1  
The Panzhihua intrusion in southwest China is part of the Emeishan large igneous province and host of a large Fe-Ti-V ore deposit.In previous interpretations it was considered to be a layered,differentiated sill with the ore deposits at its base.New structural and petrological data suggest instead that the intrusion has an open S-shape,with two near-concordant segments joined by a discordant dyke-like segment. During emplacement of the main intrusion,multiple generations of mafic dykes invaded carbonate wall rocks,producing a large contact aureole.In the central segment,magmatic layering is oriented oblique to the walls of the intrusion.This layering cannot have formed by crystal settling or in-situ growth on the floor of the intrusion;instead we propose that it resulted from inward solidification of multiple,individually operating,convection cells.Ore formation was triggered by interaction of magma with carbonate wall rocks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号