首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   6篇
  国内免费   1篇
测绘学   7篇
大气科学   9篇
地球物理   27篇
地质学   18篇
海洋学   14篇
天文学   2篇
综合类   4篇
自然地理   4篇
  2023年   1篇
  2021年   1篇
  2020年   4篇
  2019年   1篇
  2018年   4篇
  2017年   7篇
  2016年   5篇
  2015年   2篇
  2014年   4篇
  2013年   4篇
  2012年   8篇
  2011年   7篇
  2010年   6篇
  2009年   6篇
  2008年   6篇
  2007年   4篇
  2006年   1篇
  2005年   6篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有85条查询结果,搜索用时 0 毫秒
61.
The present study aims to interpret the occupation of terra firme (nonflooded uplands) archeological sites located at Tapirapé‐Aquiri National Forest in the Brazilian state of Pará, through an integrated analysis of pedological, archeological, and geochemical data. We focus on seven archaeological sites, selected among 22 identified in the region. Radiocarbon and thermoluminescence dating indicate distinct periods of occupation over the past ∼6000 years, and the pedo‐geochemical data identify intra‐ and inter‐site differences in soil. Archaeological, chronometric, and pedo‐geochemical data provide a basis for the functional classification of archeological sites found in the region and help to identify specific human activity areas. The results lead us to infer that many of the archeological sites were the result of multiple occupations that left a persistent pedological signature on the landscape.  相似文献   
62.
Calculation of ground water ages--a comparative analysis   总被引:1,自引:0,他引:1  
Castro MC  Goblet P 《Ground water》2005,43(3):368-380
Ground water age is a fundamental, yet complex, concept in ground water hydrology. Discrepancies between results obtained through different modeling approaches for ground water age calculation have been reported, in particular, between ground water ages modeled by advection and direct simulation of ground water ages (e.g., age-mass approach), which includes effects of advection and dispersion. Here, through a series of two-dimensional (2D) simulations, the impact of water mixing through advection and dispersion on modeled 14C and directly simulated ground water ages is assessed. Impact of dispersion on modeled ages is systematically stronger in areas where water velocities are smaller and far more pronounced on 14C ages. This effect is also observed in one-dimensional models. 2D simulations show that longitudinal dispersion generally acts as a "source" of 14C, while vertical dispersion acts as a "sink," leading to apparent younger or older modeled 14C ages as compared to advective and directly simulated ground water ages. The presence of permeable and impermeable faults provides an equally important source for discrepancies, leading to major differences in modeled ages among the three methods considered. Overall, our results show that a 14C modeling approach using a solute transport model for calculating ground water age appears to be more reliable in ground water systems without faults and where water velocities are relatively high than in systems that are relatively more heterogeneous and those where faults are present. Among the three modeling approaches considered here, direct simulation of ground water age seems to yield the most consistent results in complex, heterogeneous ground water flow systems, giving a vertical age structure consistent with ages expected from consideration of the flow system.  相似文献   
63.
The troposphere affects Global Navigation Satellite System (GNSS) signals due to the variability of the refractive index. Tropospheric delay is a function of the satellite elevation angle and the altitude of the GNSS receiver and depends on the atmospheric parameters. If the residual tropospheric delay is not modelled carefully a bias error will occur in the vertical component. In order to analyse the precise altimetric positioning based on a local active network, four scenarios in Southern Spain with different topographical, environmental, and meteorological conditions are presented, considering both favourable and non-favourable conditions. The use of surface meteorological observations allows us to take into account the tropospheric conditions instead of a standard atmosphere, but introduces a residual tropospheric bias which reduces the accuracy of precise GNSS positioning. Thus, with short observation times it is recommended not to estimate troposphere parameters, but to use an a priori model together with the standard atmosphere. The results confirm that it is possible to achieve centimetre-scale vertical accuracy and precision with real time kinematic positioning even with large elevation differences with respect to the nearest reference stations. These numerical results may be taken into consideration for improving the altimetric configuration of the local active network.  相似文献   
64.
The winter response of the coupled atmosphere?Cocean mixed layer system to anomalous geostrophic ocean heat flux convergence in the Kuroshio Extension is investigated by means of experiments with an atmospheric general circulation model coupled to an entraining ocean mixed layer model in the extra-tropics. The direct response consists of positive SST anomalies along the Kuroshio Extension and a baroclinic (low-level trough and upper-level ridge) circulation anomaly over the North Pacific. The low-level component of this atmospheric circulation response is weaker in the case without coupling to an extratropical ocean mixed layer, especially in late winter. The inclusion of an interactive mixed layer in the tropics modifies the direct coupled atmospheric response due to a northward displacement of the Pacific Inter-Tropical Convergence Zone which drives an equivalent barotropic anomalous ridge over the North Pacific. Although the tropically driven component of the North Pacific atmospheric circulation response is comparable to the direct response in terms of sea level pressure amplitude, it is less important in terms of wind stress curl amplitude due to the mitigating effect of the relatively broad spatial scale of the tropically forced atmospheric teleconnection.  相似文献   
65.
The late glacial to Holocene sedimentary record of the northern shelf of the Sea of Marmara (SoM) has been documented by detailed seismo-, chrono-, and biostratigraphic analyses using sub-bottom (Chirp) profiles and sediment cores. During MIS 3 and the main part of MIS 2 (60–15 14C ka b.p.), disconnection from the Mediterranean and Black seas together with a dry climate resulted in a regression in the SoM, when the Sea was transformed into a brackish lake. The river incisions below 105 m water depth along the northern shelf took place during the last glacial maximum, when the lake level was modulated by stillstands at −98 and −93 m. The post-glacial freshwater transgressive stage of the Marmara ‘Lake’ occurred between 15 and 13.5 14C ka b.p., leading to a rise in water level to −85 m by 13.0 14C ka b.p., as evidenced by broad wave-cut terraces along the northern shelf. Since 12 14C ka b.p., high-frequency sea-level fluctuations have been identified at the SoM entrance to the Strait of İstanbul (SoI). Thus, wave-cut terraces have been recorded at water depths of −76 and −71 m that, according to an age model for core MD04-2750, have ages of 11.5 and 10.5 14C ka b.p., respectively. Ancient shoreline at −65 m along the northern shelf presumably formed soon after the Younger Dryas (YD) at ca. 10.1 14C ka b.p. Moreover, there is compelling evidence of Holocene outflow from the Sea of Marmara to the Black Sea. At the SoM entrance to the SoI, the existence of bioherms on the reflector surface together with abundant Brizalina spathulata and Protoglobulimina pupoides in a core suggests a return to higher salinities due to strong Mediterranean water incursion into the SoM at ∼8.8 14C ka b.p. This finding is consistent with earlier suggestions that, after the YD, the Black Sea was flooded by outflow from the SoM as a result of global sea-level rise.  相似文献   
66.
Soil water content is a key variable for biogeochemical and atmospheric coupled processes. Its small‐scale heterogeneity impacts the partitioning of precipitation (e.g., deep percolation or transpiration) by triggering threshold processes and connecting flow paths. Forest hydrologists frequently hypothesized that throughfall and stemflow patterns induce soil water content heterogeneity, yet experimental validation is limited. Here, we pursued a pattern‐oriented approach to explore the relationship between net precipitation and soil water content. Both were measured in independent high‐resolution stratified random designs on a 1‐ha temperate mixed beech forest plot in Germany. We recorded throughfall (350 locations) and stemflow (65 trees) for 16 precipitation events in 2015. Soil water content was measured continuously in topsoil and subsoil (210 profiles). Soil wetting was only weakly related to net precipitation patterns. The precipitation‐induced pattern quickly dissipates and returns to a basic pattern, which is temporally stable. Instead, soil hydraulic properties (by the proxy of field capacity) were significantly correlated with this stable soil water content pattern, indicating that soil structure more than net precipitation drives soil water content heterogeneity. Also, both field capacity and soil water content were lower in the immediate vicinity of tree stems compared to further away at all times, including winter, despite stemflow occurrence. Thus, soil structure varies systematically according to vegetation in our site. We conclude that enhanced macroporosity increases gravity‐driven flow in stem proximal areas. Therefore, although soil water content patterns are little affected by net precipitation, the resulting soil water fluxes may strongly be affected. Specifically, this may further enhance the channelling of stemflow to greater depth and beyond the rooting zone.  相似文献   
67.
Age and origin of the charnockitic rocks of the central part of the Guyana Shield have been a matter of discussion. These rocks have been interpreted either as Transamazonian granulites metamorphosed around 2.02 Ga or as 1.56 Ga old igneous charnockites. Recently, most of the Roraima charnockitic rocks have been recognized as igneous rocks and included into the Serra da Prata Suite (SPS). Five Pb–Pb single-zircon evaporation ages were obtained for samples representative of different facies of the SPS and these constrained the age of the charnockitic magmatism between 1943 ± 5 Ma and 1933 ± 2 Ma. This charnockitic magmatism may be related to a post-collisional setting after the evolution of the Cauarane-Coeroeni Belt (~2.00 Ga), or may represent a post-collisional (or intracontinental?) magmatism related to orogenic activities along the plate margins around 1.95–1.94 Ga.  相似文献   
68.
The Quaternary sediments representing the interface between the granite host rock and the Earth surface are of paramount importance when determining the potential cycling of anthropogenic and natural radionuclides in near-surface systems. This is particularly true in the case of high-level nuclear waste (HLNW) repositories placed in granite. In this work a modelling procedure is presented to quantitatively determine the retention capacity of a Quaternary till in the Forsmark area, which has been recently selected to host the deep geologic storage of HLNW in Sweden. Reactive transport numerical models have been used to simulate the intrusion of a deep groundwater carrying radionuclides potentially released from a repository into a Quaternary till. Four radionuclides (235U, 135Cs, 226Ra and 90Sr) have been selected according to their different geochemical behaviour and potential dose relevance to surface ecosystems. Numerical results indicate that repository-derived: (i) U will have a minor impact in the till, mainly due to the high natural concentration of U and its adsorption on ferrihydrite; (ii) Cs will be efficiently retained by cation exchange on illite; (iii) Ra will be retained via co-precipitation with barite; and although (iv) Sr will be retained via co-precipitation with calcite and cation exchange on illite, the retention capacity of the Quaternary till for Sr is limited.  相似文献   
69.
70.
Flows of different hierarchy, which travel through limestone, schist, sandstone and ultra-basic rocks, with ages from the Paleocene to the Jurassic, at Sierra del Rosario, Pinar del Río, Cuba, were characterized. The waters were sampled from 1984 until 2004 and the data were statistically processed by means of chemical equilibrium and physico-chemical models, under a flow system view of interpretation. Results demonstrate that the physico-chemical properties of the water are controlled by water–rock interaction resulting from residence time since rainwater infiltrate and the path it follows to the discharge zone and the type of aquifer material the different groundwater flows are in contact with. Geochemical indices allow the definition of the different types of flow (local, intermediate, regional) to be characterized, permitting a further definition of the different flow systems and rock type involved, as well as its use for water supply and medical use. The main geochemical processes which control the chemical composition acquisitions mode are: congruent dissolution of calcite, dolomite, and halite; incongruent dissolution of plagioclase and microcline minerals; pyrite oxidation, sulphate reduction, and silica dissolution at the surface or silica precipitation at deep saturation and circulation zones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号