首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   20篇
  国内免费   3篇
测绘学   7篇
大气科学   19篇
地球物理   72篇
地质学   93篇
海洋学   32篇
天文学   32篇
自然地理   38篇
  2024年   1篇
  2022年   2篇
  2021年   2篇
  2020年   7篇
  2019年   8篇
  2018年   7篇
  2017年   5篇
  2016年   13篇
  2015年   4篇
  2014年   13篇
  2013年   21篇
  2012年   20篇
  2011年   33篇
  2010年   26篇
  2009年   22篇
  2008年   8篇
  2007年   13篇
  2006年   9篇
  2005年   14篇
  2004年   8篇
  2003年   7篇
  2002年   9篇
  2001年   7篇
  2000年   5篇
  1999年   6篇
  1998年   4篇
  1996年   1篇
  1994年   5篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1985年   2篇
  1979年   1篇
  1973年   1篇
  1967年   1篇
排序方式: 共有293条查询结果,搜索用时 15 毫秒
201.
We utilize the MarsWRF general circulation model (GCM) to address the behavior of gas plumes in the Martian atmosphere, with the specific goal of characterizing the source of the recently identified methane detection in the Martian atmosphere. These observations have been interpreted as the release of methane from localized surface sources with spatial and temporal variabilities. Due to the limited temporal coverage of ground-based observations, we use a GCM to simulate the development of passive atmospheric plumes over relevant timescales. The observations can be reproduced best if the release occurred just before the time of observation—no more than 1–2 sols earlier—and if this release were nearly instantaneous rather than a slow, steady emission. Furthermore, it requires a source region spanning a broad latitudinal range rather than a point emission. While the accuracy of our conclusions about this specific methane release scenario is limited by the uncertainties inherent in GCM simulations of the Martian atmosphere, our findings regarding generalized plume behavior are robust, and illustrate the potential power of numerical modeling for constraining plume source conditions.  相似文献   
202.
Cristobalite is commonly found in the dome lava of silicic volcanoes but is not a primary magmatic phase; its presence indicates that the composition and micro-structure of dome lavas evolve during, and after, emplacement. Nine temporally and mineralogically diverse dome samples from the Soufrière Hills volcano (SHV), Montserrat, are analysed to provide the first detailed assessment of the nature and mode of cristobalite formation in a volcanic dome. The dome rocks contain up to 11 wt.% cristobalite, as defined by X-ray diffraction. Prismatic and platy forms of cristobalite, identified by scanning electron microscopy (SEM), are commonly found in pores and fractures, suggesting that they have precipitated from a vapour phase. Feathery crystallites and micro-crystals of cristobalite and quartz associated with volcanic glass, identified using SEM-Raman, are interpreted to have formed by varying amounts of devitrification. We discuss mechanisms of silica transport and cristobalite formation, and their implications for petrological interpretations and dome stability. We conclude: (1) that silica may be transported in the vapour phase locally, or from one part of the magmatic system to another; (2) that the potential for transport of silica into the dome should not be neglected in petrological and geochemical studies because the addition of non-magmatic phases may affect whole rock composition; and (3) that the extent of cristobalite mineralisation in the dome at SHV is sufficient to reduce porosity—hence, permeability—and may impact on the mechanical strength of the dome rock, thereby potentially affecting dome stability.  相似文献   
203.
Dilution of precision (DOP) is a fundamental concept in satellite navigation and surveying. A deeper understanding of this concept can be achieved through the means of 3D immersive visualisation. In this article, we present a method for visualising and exploring the spatial variation of DOP and discuss its presentation within an immersive virtual environment. The work demonstrates a real-time simulation of global positioning system (GPS) satellite geometry, modelled and visualised within a virtual representation of the university campus. The number of satellites visible to the receiver is modelled in real time as a user walks through the university campus. During this process, the changing satellite geometry is visualised in both 3D and aerial views. Various DOP values update to the screen against a pseudo-realistic building backdrop as the user travels. Both the aerial views and the changing volumes of the tetrahedra drawn in 3D provide an effective way of interpreting why exceptionally large or small horizontal DOP and vertical DOP values can occur in an urban context. Because the factors affecting DOPs are inherently 3D, communicating the spatial uncertainty of global positioning system coordinates within an immersive stereo environment has been viewed as a particularly powerful communication tool by both undergraduate and postgraduate students studying GI Science.  相似文献   
204.
Abstract– Analyses by the Mars Exploration Rover (MER), Spirit, of Martian basalts from Gusev crater show that they are chemically very different from terrestrial basalts, being characterized in particular by high Mg‐ and Fe‐contents. To provide suitable analog basalts for the International Space Analogue Rockstore (ISAR), a collection of analog rocks and minerals for preparing in situ space missions, especially, the upcoming Mars mission MSL‐2011 and the future international Mars‐2018 mission, it is necessary to synthesize Martian basalts. The aim of this study was therefore to synthesize Martian basalt analogs to the Gusev crater basalts, based on the geochemical data from the MER rover Spirit. We present the results of two experiments, one producing a quench‐cooled basalt (<1 h) and one producing a more slowly cooled basalt (1 day). Pyroxene and olivine textures produced in the more slowly cooled basalt were surprisingly similar to spinifex textures in komatiites, a volcanic rock type very common on the early Earth. These kinds of ultramafic rocks and their associated alteration products may have important astrobiological implications when associated with aqueous environments. Such rocks could provide habitats for chemolithotrophic microorganisms, while the glass and phyllosilicate derivatives can fix organic compounds.  相似文献   
205.
We have investigated the Na distributions in Semarkona Type II chondrules by electron microprobe, analyzing olivine and melt inclusions in it, mesostasis and bulk chondrule, to see whether they indicate interactions with an ambient gas during chondrule formation. Sodium concentrations of bulk chondrule liquids, melt inclusions and mesostases can be explained to a first approximation by fractional crystallization of olivine ± pyroxene. The most primitive olivine cores in each chondrule are mostly between Fa8 and Fa13, with 0.0022–0.0069 ± 0.0013 wt.% Na2O. Type IIA chondrule olivines have consistently higher Na contents than olivines in Type IIAB chondrules. We used the dependence of olivine–liquid Na partitioning on FeO in olivine as a measure of equilibration. Extreme olivine rim compositions are ~Fa35 and 0.03 wt.% Na2O and are close to being in equilibrium with the mesostasis glass. Olivine cores compared with the bulk chondrule compositions, particularly in IIA chondrules, show very high apparent DNa, indicating disequilibrium and suggesting that chondrule initial melts were more Na-rich than present chondrule bulk compositions. The apparent DNa values correlate with the Na concentrations of the olivine, but not with concentrations in the bulk melt. We use equilibrium DNa to find the Na content of the true parent liquid and estimate that Type IIA chondrules lost more than half their Na and recondensation was incomplete, whereas Type IIAB chondrules recovered most of theirs in their mesostases.Glass inclusions in olivine have lower Na than expected from fractionation of bulk composition liquids, and mesostases have higher Na than expected in calculated daughter liquids formed by fractional crystallization alone. These observations also require open system behavior of chondrules, specifically evaporation of Na before formation of melt inclusions followed by recondensation of Na in mesostases. Within this record of evaporation followed by recondensation, there is no indication of a stage with zero Na in the chondrules, which is predicted by models for shock wave cooling at canonical nebular pressures, suggesting high PT.The high Na concentrations in olivine and mesostases indicate very high PNa while chondrules were molten. This may be explained by local, very high particle densities where Type II chondrules formed. The high PT, PNa and number densities of chondrules implied suggest formation in debris clouds after protoplanetary collisions as an alternative to formation after passage of shock waves through large particle-rich clumps in the disk. Encounters of partially molten chondrules should have been frequent in these dense swarms. However, in many ordinary chondrites like Semarkona, “cluster chondrites”, compound chondrules are not abundant but instead chondrules aggregated into clusters. Chondrule melting, cooling and clustering in dense swarms contributed to rapid accretion, possibly after collision, by fallback on the grandparent body and by reaccretion as a new body downrange.  相似文献   
206.
We calculated the temperature response of the 171 Å passbands of the Sun Watcher using APS detectors and image Processing (SWAP) instrument onboard the PRoject for OnBoard Autonomy 2 (PROBA2) satellite. These results were compared to the temperature responses of the Extreme Ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO), the Transition Region and Coronal Explorer (TRACE), the twin Extreme Ultraviolet Imagers (EUVI) onboard the Solar TErrestrial RElations Observatory (STEREO) A and B spacecraft, and the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). Multiplying the wavelength-response functions for each instrument by a series of isothermal synthetic spectra and integrating over the range 165?–?195 Å produced temperature-response functions for the six instruments. Each temperature response was then multiplied by sample differential emission-measure functions for four different solar conditions. For any given plasma condition (e.g. quiet Sun, active region), it was found that the overall variation with temperature agreed remarkably well across the six instruments, although the wavelength responses for each instrument have some distinctly different features. Deviations were observed, however, when we compared the response of any one instrument to different solar conditions, particularly for the case of solar flares.  相似文献   
207.
208.
209.
210.
Equilibrium in the chabazite-H2O system was investigated by isothermal thermogravimetric analysis over a large range of temperatures (from 23 to 315°C) and H2O-vapor pressures (from 0.03 to 28 mbar). Thermodynamic analysis of the phase-equilibrium data revealed the existence of three energetically distinct types of H2O, referred to as S-1, S-2, and S-3. At 23°C and 26 mbar of H2O-vapor pressure, chabazite has maximum H2O occupancies of 8.2, 11.1, and 3.1 wt.% for S-1, S-2, and S-3, respectively. During dehydration, S-1 H2O is lost first, followed by S-2 H2O and then S-3 H2O, with significant overlap for S-1 and S-2 as well as S-2 and S-3. The thermodynamics of chabazite-H2O were modeled using three independent equilibrium formulations for S-1, S-2, and S-3. These formulations yielded standard-state molar Gibbs free energy of hydration of −21.8 ± 0.6, −52.1 ± 1.8, and −111.7 ± 6.7 kJ/mol for S-1, S-2, and S-3. Standard-state molar enthalpies of hydration for each type of H2O are −65.6 ± 0.5, −100.1 ± 1.6, and −156.9 ± 6.2 kJ/mol, respectively. Integral molar values for the Gibbs free energy of hydration for each type of H2O are −19.0 ± 0.7, −40.1 ± 2.1, and −76.9 ± 9.6 kJ/mol, respectively. Integral molar values for the enthalpy of hydration for each type of H2O are −62.8 ± 0.6, −88.1 ± 1.9, and −122.2 ± 9.3 kJ/mol, respectively. Integration of the predicted total partial molar enthalpy of hydration for all three types of H2O over the full H2O content of chabazite gave an integral molar enthalpy of −39.65 ± 9.3 kJ/mol relative to liquid water. The thermodynamic data obtained for the hydration of natural chabazite were used to predict the hydration state of chemically similar chabazites under various temperatures and PH2O, ranging from 25 to 400°C and from 10−5 to 104 bars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号